Smart Damping of Rotating Functionally Graded Laminated Composite Cylindrical Shells Using 1–3 Piezoelectric Composites

Author(s):  
N. Mehadi Khan ◽  
R. Suresh Kumar
1999 ◽  
Author(s):  
Hayder A. Rasheed ◽  
John L. Tassoulas

Abstract Interfacial defects, in the form of cracks or layer separation, may occur in composite cylindrical shells during the manufacturing process, transportation or service life. Such defects are expected to affect the integrity of laminated composite structural elements and may reduce their capacity to resist the applied loads. In this article, the growth of pre-existing cracks in moderately thick composite cylinders is studied for the case of externally applied fluid pressure. The cracks considered separate thick layers, which are unlikely to buckle locally prior to the final collapse of the structural component. The potential of growth is assessed by computing the energy release rate. It is found that any initial out-of roundness imperfection introduces a shear force at the crack tip by causing the cross section to ovalize slightly. The energy release rate is found to vary exponentially with the applied pressure, when geometric nonlinearities are considered. The analysis is applied to a carbon/glass-fiber hybrid composite tube and the parameters influencing growth are examined. Crack length, through the thickness location, circumferential location relative to the ovalization orientation and the amount of imperfection are found to control the nature of growth. Unstable as well as stable crack growth and arrest cases are observed for various combinations of these parameters.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050072
Author(s):  
Vu Hoai Nam ◽  
Nguyen-Thoi Trung ◽  
Nguyen Thi Phuong ◽  
Vu Minh Duc ◽  
Vu Tho Hung

This paper deals with the nonlinear large deflection torsional buckling of functionally graded carbon nanotube (CNT) orthogonally reinforced composite cylindrical shells surrounded by Pasternak’s elastic foundations with the thermal effect. The shell is made by two layers where the polymeric matrix is reinforced by the CNTs in longitudinal and circumferential directions for outer and inner layers, respectively. The stability equation system is obtained by combining the Donnell’s shell theory, von Kármán nonlinearity terms, the circumferential condition in average sense and three-state solution form of deflection. The critical torsional buckling load, postbuckling load-deflection and the load-end shortening expressions are obtained by applying the Galerkin procedure. The effects of temperature change, foundation parameters, geometrical properties and CNT distribution law on the nonlinear behavior of cylindrical shell are numerically predicted. Especially, the effect of orthogonal reinforcement in comparison with longitudinal and circumferential reinforcement on the torsional buckling behavior of shells is observed.


2017 ◽  
Vol 214 ◽  
pp. 76-85
Author(s):  
Periyasamy Manikandan ◽  
Sunil Chandrakant Joshi ◽  
Armando Pinter

Sign in / Sign up

Export Citation Format

Share Document