Hydrogen as Maritime Transportation Fuel: A Pathway for Decarbonization

Author(s):  
Omer Berkehan Inal ◽  
Burak Zincir ◽  
Caglar Dere
Author(s):  
Peter Rez

Transportation efficiency can be measured in terms of the energy needed to move a person or a tonne of freight over a given distance. For passengers, journey time is important, so an equally useful measure is the product of the energy used and the time taken for the journey. Transportation requires storage of energy. Rechargeable systems such as batteries have very low energy densities as compared to fossil fuels. The highest energy densities come from nuclear fuels, although, because of shielding requirements, these are not practical for most forms of transportation. Liquid hydrocarbons represent a nice compromise between high energy density and ease of use.


2021 ◽  
Vol 13 (2) ◽  
pp. 703
Author(s):  
Megan Drewniak ◽  
Dimitrios Dalaklis ◽  
Anastasia Christodoulou ◽  
Rebecca Sheehan

In recent years, a continuous decline of ice-coverage in the Arctic has been recorded, but these high latitudes are still dominated by earth’s polar ice cap. Therefore, safe and sustainable shipping operations in this still frozen region have as a precondition the availability of ice-breaking support. The analysis in hand provides an assessment of the United States’ and Canada’s polar ice-breaking program with the purpose of examining to what extent these countries’ relevant resources are able to meet the facilitated growth of industrial interests in the High North. This assessment will specifically focus on the maritime transportation sector along the Northwest Passage and consists of four main sections. The first provides a very brief description of the main Arctic passages. The second section specifically explores the current situation of the Northwest Passage, including the relevant navigational challenges, lack of infrastructure, available routes that may be used for transit, potential choke points, and current state of vessel activity along these routes. The third one examines the economic viability of the Northwest Passage compared to that of the Panama Canal; the fourth and final section is investigating the current and future capabilities of the United States’ and Canada’s ice-breaking fleet. Unfortunately, both countries were found to be lacking the necessary assets with ice-breaking capabilities and will need to accelerate their efforts in order to effectively respond to the growing needs of the Arctic. The total number of available ice-breaking assets is impacting negatively the level of support by the marine transportation system of both the United States and Canada; these two countries are facing the possibility to be unable to effectively meet the expected future needs because of the lengthy acquisition and production process required for new ice-breaking fleets.


Author(s):  
Chien-Chang Chou

Navigational safety is an important issue in maritime transportation. The most frequent type of maritime accident in the port and coastal waters is the ship collision. Although some ship collision models have been developed in the past, few have taken account of wind and sea current effects. However, wind and sea current are critical factors in ship maneuvering. Therefore, based on the previous collision model without wind and sea current effects, this study further develops a ship collision model with wind and sea current effects. Finally, a comparison of the results for the proposed collision model in this study and the ship maneuvering simulator is shown to illustrate the effectiveness of the proposed mathematical model in this paper, followed by the conclusions and suggestions given to navigators, port managers, and governmental maritime departments to improve navigational safety in port and coastal waters.


2021 ◽  
Vol 1 ◽  
pp. 1023-1032
Author(s):  
Erik Aleksander Veitch ◽  
Thomas Kaland ◽  
Ole Andreas Alsos

AbstractArtificial intelligence is transforming how we interact with vehicles. We examine the case of Maritime Autonomous Surface Ships (MASS), which are emerging as a safer and more effective solution for maritime transportation. Despite the focus on autonomy, humans are predicted to have a central role in MASS operations from a Shore Control Centre (SCC). Here, operators will provide back-up control in the event of system failure. There are signification design challenges with such a system. The most critical is human-system interaction in autonomy (H-SIA). We consider humans as the source of resilience in the system for adapting to unexpected events and managing safety. We ask, can Human-Centred Design (HCD) be used to create resilient interactions between MASS and SCC? Work has been done in resilience engineering for complex systems but has not been extended to H-SIA in transportation. “Resilient interaction design” is relevant as we progress from design to operational phase. We adopted the ISO 9421-210 guideline to structure our HCD approach. The result is an SCC designed for 1 Autonomy Operator (AO). The contribution is a demonstration of how resilient interaction design may lead to safer and more effective H-SIA in transportation.


Author(s):  
Saleh Aseel ◽  
Hussein Al-Yafei ◽  
Murat Kucukvar ◽  
Nuri C. Onat ◽  
Metin Turkay ◽  
...  

Logistics ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 23
Author(s):  
Rebecca Sheehan ◽  
Dimitrios Dalaklis ◽  
Anastasia Christodoulou ◽  
Megan Drewniak ◽  
Peter Raneri ◽  
...  

The analysis in hand provides a brief assessment of the United States’ and Canada’s marine transportation system and relevant search and rescue (SAR) support in relation to the Northwest Passage, with the purpose of examining to what extent these countries’ relevant infrastructure resources are able to meet the expected growth of shipping operations and business activities in the Arctic. Through an extensive literature review, this assessment will specifically describe the most important influences upon the maritime transportation system, with the issue of certain geographical details and the capabilities of existing ports standing out. Additionally, vessel activity trends and vessel traffic routing measure initiatives will be examined. Furthermore, the SAR infrastructure details and means to render assistance to people in distress along the Northwest Passage will be discussed. The reality remains that port characteristics are limited and vessel traffic routing measure initiatives and upgrades to SAR assets are commendable but slow-paced. It is true that both the United States and Canada are taking proper measures to build up infrastructure needs, but they both may run out of time to put adequate infrastructure in place to deal effectively with the changing environment.


Author(s):  
Cuong Truong Ngoc ◽  
Xiao Xu ◽  
Hwan-Seong Kim ◽  
Duy Anh Nguyen ◽  
Sam-Sang You

This paper deals with three-dimensional (3D) model of competitive Lotka-Volterra equation to investigate nonlinear dynamics and control strategy of container terminal throughput and capacity. Dynamical behaviors are intensely explored by using eigenvalue evaluation, bifurcation analysis, and time-series data. The dynamical analysis is to show the stability with bifurcation of the competition and collaboration of multiple container terminals in the maritime transportation. Based on the chaotic analysis, the sliding mode control theory has been utilized for optimization of port operations under disruptions. Extensive numerical simulations have been conducted to validate the efficacy and reliability of the presented control algorithms. Particularly, the closed-loop system has been assessed through chaotic suppression and synchronization strategies for port management. Finally, the presented fundamental techniques can be utilized to provide managerial insights and solutions on efficient seaport operations that allow more timely and cost-effective decision making for port authorities in such a highly competitive environment.


2020 ◽  
Vol 7 (1) ◽  
pp. 29-36
Author(s):  
Antonina A. Stepacheva ◽  
Mariia E. Markova ◽  
Yury V. Lugovoy ◽  
Kirill V. Chalov ◽  
Mikhail G. Sulman ◽  
...  

AbstractHydrotreatment of bio-oil oxygen compounds allows the final product to be effectively used as a liquid transportation fuel from biomass. Deoxygenation is considered to be one of the most promising ways for bio-oil upgrading. In the current work, we describe a novel approach for the deoxygenation of bio-oil model compounds (anisole, guaiacol) using supercritical fluids as both the solvent and hydrogen-donors. We estimated the possibility of the use of complex solvent consisting of non-polar n-hexane with low critical points (Tc = 234.5 ºC, Pc = 3.02 MPa) and propanol-2 used as H-donor. The experiments were performed without catalysts and in the presence of noble and transition metals hydrothermally deposited on the polymeric matrix of hypercrosslinked polystyrene (HPS). The experiments showed that the presence of 20 vol. % of propanol-2 in n-hexane results in the highest (up to 99%) conversion of model compounds. When the process was carried out without a catalyst, phenols were found to be a major product yielding up to 95 %. The use of Pd- and Co-containing catalyst yielded 90 % of aromatic compounds (benzene and toluene) while in the presence of Ru and Ni cyclohexane and methylcyclohexane (up to 98 %) were the main products.


Sign in / Sign up

Export Citation Format

Share Document