Incorporation and metabolism of 14C-labelled polyunsaturated fatty acids in juvenile gilthead sea bream Sparus aurata L. in vivo

1993 ◽  
Vol 10 (6) ◽  
pp. 443-453 ◽  
Author(s):  
Gabriel Mourente ◽  
Douglas R. Tocher
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 362
Author(s):  
Amparo Picard-Sánchez ◽  
M. Carla Piazzon ◽  
Itziar Estensoro ◽  
Raquel Del Pozo ◽  
Nahla Hossameldin Ahmed ◽  
...  

Enterospora nucleophila is a microsporidian enteroparasite that infects mainly the intestine of gilthead sea bream (Sparus aurata), leading to an emaciative syndrome. Thus far, the only available information about this infection comes from natural outbreaks in farmed fish. The aim of the present study was to determine whether E. nucleophila could be transmitted horizontally using naturally infected fish as donors, and to establish an experimental in vivo procedure to study this host–parasite model without depending on natural infections. Naïve fish were exposed to the infection by cohabitation, effluent, or intubated either orally or anally with intestinal scrapings of donor fish in four different trials. We succeeded in detecting parasite in naïve fish in all the challenges, but the infection level and the disease signs were always milder than in donor fish. The parasite was found in peripheral blood of naïve fish at 4 weeks post-challenge (wpc) in oral and effluent routes, and up to 12 wpc in the anal transmission trial. Molecular diagnosis detected E. nucleophila in other organs besides intestine, such as gills, liver, stomach or heart, although the intensity was not as high as in the target tissue. The infection tended to disappear through time in all the challenge routes assayed, except in the anal infection route.


Aquaculture ◽  
2006 ◽  
Vol 251 (2-4) ◽  
pp. 491-508 ◽  
Author(s):  
Óscar Monroig ◽  
Juan Carlos Navarro ◽  
Francisco Amat ◽  
Pedro González ◽  
Azucena Bermejo ◽  
...  

2008 ◽  
Vol 19 (3) ◽  
pp. 187-188
Author(s):  
A. Mnari ◽  
I. Bouhlel ◽  
I. Chraief ◽  
M. Hammami ◽  
M. El Cafsl ◽  
...  

Aquaculture ◽  
2006 ◽  
Vol 261 (3) ◽  
pp. 856-864 ◽  
Author(s):  
Ariadna Sitjà-Bobadilla ◽  
Magnolia Conde de Felipe ◽  
Pilar Alvarez-Pellitero

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10430
Author(s):  
David Huyben ◽  
Simona Rimoldi ◽  
Chiara Ceccotti ◽  
Daniel Montero ◽  
Monica Betancor ◽  
...  

Background In the last two decades, research has focused on testing cheaper and sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds. However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant, Camelina sativa, may have a higher potential to replace FO since it can contains up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). Methods A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus aurata) of 32.92 ±  0.31 g mean initial weight fed three diets that replaced 20%, 40% and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate tanks per diet and with 50 fish each in a flow-through open marine system. Growth performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by PICRUSt. Results and Conclusions The feed conversion rate and specific growth rate were not affected by diet, although final weight was significantly lower for fish fed the 60% CO diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO ingredient. The lipid profile of fillets were similar between the dietary groups in regards to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6. Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and mucosa were not affected by any dietary treatment, although a few indicator bacteria, such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota. PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and mucosa, although a higher abundance of Corynebacterium in the mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and may act to compensate for the lack of fatty acids in the diet. In summary, this study demonstrated that up to 40% of FO can be replaced with CO without negative effects on growth performance, fillet composition and gut microbiota of gilthead sea bream.


Sign in / Sign up

Export Citation Format

Share Document