Evolution of the Group 1 late embryogenesis abundant (Lea) genes: analysis of the Lea B19 gene family in barley

1995 ◽  
Vol 28 (6) ◽  
pp. 1039-1054 ◽  
Author(s):  
Robin A. P. Stacy ◽  
Mari Espelund ◽  
Stein S�b�e-Larssen ◽  
Kristin Hollung ◽  
Even Helliesen ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zihan Cheng ◽  
Xuemei Zhang ◽  
Wenjing Yao ◽  
Kai Zhao ◽  
Lin Liu ◽  
...  

Abstract Background The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. Results On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. Conclusion Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.


2018 ◽  
Vol 19 (11) ◽  
pp. 3430 ◽  
Author(s):  
Blaise Muvunyi ◽  
Qi Yan ◽  
Fan Wu ◽  
Xueyang Min ◽  
Zhuan Yan ◽  
...  

Plant growth and development depends on its ability to maintain optimal cellular homeostasis during abiotic and biotic stresses. Cleistogenes songorica, a xerophyte desert plant, is known to have novel drought stress adaptation strategies and contains rich pools of stress tolerance genes. Proteins encoded by Late Embryogenesis Abundant (LEA) family genes promote cellular activities by functioning as disordered molecules, or by limiting collisions between enzymes during stresses. To date, functions of the LEA family genes have been heavily investigated in many plant species except perennial monocotyledonous species. In this study, 44 putative LEA genes were identified in the C. songorica genome and were grouped into eight subfamilies, based on their conserved protein domains and domain organizations. Phylogenetic analyses indicated that C. songorica Dehydrin and LEA_2 subfamily proteins shared high sequence homology with stress responsive Dehydrin proteins from Arabidopsis. Additionally, promoter regions of CsLEA_2 or CsDehydrin subfamily genes were rich in G-box, drought responsive (MBS), and/or Abscisic acid responsive (ABRE) cis-regulatory elements. In addition, gene expression analyses indicated that genes from these two subfamilies were highly responsive to heat stress and ABA treatment, in both leaves and roots. In summary, the results from this study provided a comprehensive view of C. songorica LEA genes and the potential applications of these genes for the improvement of crop tolerance to abiotic stresses.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hao Liu ◽  
Mingyan Xing ◽  
Wenbo Yang ◽  
Xiaoqian Mu ◽  
Xin Wang ◽  
...  

Abstract Late embryogenesis abundant (LEA) proteins are involved in the responses and adaptation of plants to various abiotic stresses, including dehydration, salinity, high temperature, and cold. Here, we report the first comprehensive survey of the LEA gene family in “Chinese Spring” wheat (Triticum aestivum). A total of 179 TaLEA genes were identified in T. aestivum and classified into eight groups. All TaLEA genes harbored the LEA conserved motif and had few introns. TaLEA genes belonging to the same group exhibited similar gene structures and chromosomal locations. Our results revealed that most TaLEA genes contained abscisic acid (ABA)-responsive elements (ABREs) and various cis-acting elements associated with the stress response in the promoter region and were induced under ABA and abiotic stress treatments. In addition, 8 genes representing each group were introduced into E. coli and yeast to investigate the protective function of TaLEAs under heat and salt stress. TaLEAs enhanced the tolerance of E. coli and yeast to salt and heat, indicating that these proteins have protective functions in host cells under stress conditions. These results increase our understanding of LEA genes and provide robust candidate genes for future functional investigations aimed at improving the stress tolerance of wheat.


2010 ◽  
Vol 148 (5) ◽  
pp. 581-592 ◽  
Author(s):  
Alden H. Warner ◽  
Olga Miroshnychenko ◽  
Anna Kozarova ◽  
Panayiotis O. Vacratsis ◽  
Thomas H. MacRae ◽  
...  

2015 ◽  
Vol 21 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Alden H. Warner ◽  
Zhi-hao Guo ◽  
Sandra Moshi ◽  
John W. Hudson ◽  
Anna Kozarova

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 696
Author(s):  
Datong Liu ◽  
Jing Sun ◽  
Dongmei Zhu ◽  
Guofeng Lyu ◽  
Chunmei Zhang ◽  
...  

Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.


Sign in / Sign up

Export Citation Format

Share Document