Characterization of rat lymphocyte primary culture for the development of an in-vitro mutagenesis assay: Effect of interleukin-2 and 2-mercaptoethanol on the activities of intermediary metabolism enzymes and cell proliferation

1996 ◽  
Vol 12 (2) ◽  
pp. 79-87 ◽  
Author(s):  
A. Aidoo ◽  
R. J. Feuers ◽  
L. E. Lyn-Cook ◽  
M. E. Bishop ◽  
D. A. Casciano
1984 ◽  
Vol 26 (3) ◽  
pp. 386-389 ◽  
Author(s):  
Linda J. Reha-Krantz ◽  
Sükran Parmaksizoglu

The effect of temperature on genetically well-defined mutational pathways was examined in the bacteriophage T4. The mutational site was a T4 rII ochre mutant which could revert to rII+ via a transversion or to the amber convertant via a transition. Temperature did not strongly affect any of the pathways examined in a wild-type background; however, increased temperature reduced the mutational activity of a mutator DNA polymerase mutant. Possible models to explain the role of temperature in mutagenesis are discussed as well as the significance of low temperatures for in vitro mutagenesis reactions.Key words: bacteriophage T4, mutator, transition, transversion, temperature effects.


2016 ◽  
Vol 720 ◽  
pp. 108-113
Author(s):  
Criseida Ruiz-Aguilar ◽  
E.A. Aguilar-Reyes ◽  
Ana Edith Higareda-Mendoza ◽  
C.A. León-Patiño

Bone tissue engineering is an excellent alternative to reduce bone disorders and conditions, by inducing new functional bone regeneration starting from the synthesis of the biomaterials and then the combination of cell and factor therapy. In the present contribution, the scaffolds were made with a ratio of 80 wt.% of β-TCP and 20 wt. % of phosphate-based bioglass, in addition the phosphate-based bioglass was reinforced with zirconia in different amounts (0, 0.5 and 1.0 mol%) with the aim to reduce the dissolution rate, improve the osteoconduction and the osteogenesis of the bone tissue. The results obtained by μCT of the scaffolds containing zirconia showed a wide pore size distribution between 1.5 and 303 μm. AlamarBlue assays showed that the cell proliferation of MC3T3-E1 preosteoblasts scaffolds were sixfold increase in relation to the number of the initial cells. FE-SEM helped to observe the cauliflower structure of HA and DRX showed that crystalline phases formed after heat treatment were (NaCaPO4 and NaZr5PO4) owing both to the crystallization and combination of the bioglass and β-TCP .


1994 ◽  
Vol 300 (2) ◽  
pp. 331-338 ◽  
Author(s):  
P A Curmi ◽  
A Maucuer ◽  
S Asselin ◽  
M Lecourtois ◽  
A Chaffotte ◽  
...  

Stathmin, a probable relay protein possibly integrating multiple intracellular regulatory signals [reviewed in Sobel (1991) Trends Biochem. Sci. 16, 301-305], was expressed in Escherichia coli at levels as high as 20% of total bacterial protein. Characterization of the purified recombinant protein revealed that it had biochemical properties very similar to those of the native protein. It is a good substrate for both cyclic AMP-dependent protein kinase (PKA) and p34cdc2, on the same four sites as the native eukaryotic protein. As shown by m.s., the difference in isoelectric points from the native protein is probably due to the absence of acetylation of the protein produced in bacteria. C.d. studies indicate that stathmin probably contains about 45% of its sequence in an alpha-helical conformation, as also predicted for the sequence between residues 47 and 124 by computer analysis. Replacement of Ser-63 by alanine by in vitro mutagenesis resulted in a ten times less efficient phosphorylation of stathmin by PKA which occurred solely on Ser-16, confirming that Ser-63 is the major target of this kinase. Replacement of Ser-25, the major site phosphorylated by mitogen-activated protein kinase in vitro and in vivo, by the charged amino acid glutamic acid reproduced, in conjunction with the phosphorylation of Ser-16 by PKA, the mobility shift on SDS/polyacrylamide gels induced by the phosphorylation of Ser-25. This result strongly suggests that glutamic acid in position 25 is able to mimic the putative interactions of phosphoserine-25 with phosphoserine-16, as well as the resulting conformational changes that are probably also related to the functional regulation of stathmin.


1988 ◽  
Vol 111 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Henry L. Wong ◽  
Darien E. Wilson ◽  
James C. Jenson ◽  
Philip C. Familletti ◽  
Donna L. Stremlo ◽  
...  

1984 ◽  
Vol 4 (11) ◽  
pp. 2396-2405
Author(s):  
R L Last ◽  
J B Stavenhagen ◽  
J L Woolford

Temperature-sensitive mutations in the genes RNA2 through RNA11 cause accumulation of intervening sequence containing precursor mRNAs in Saccharomyces cerevisiae. Three different plasmids have been isolated which complement both the temperature-sensitive lethality and precursor mRNA accumulation when introduced into rna2, rna3, and rna11 mutant strains. The yeast sequences on these plasmids have been shown by Southern transfer hybridization and genetic mapping to be derived from the RNA2, RNA3, and RNA11 genomic loci. Part of the RNA2 gene is homologous to more than one region of the yeast genome, whereas the RNA3 and RNA11 genes are single copy. RNAs homologous to these loci have been identified by RNA transfer hybridization, and the specific RNAs which are associated with the Rna+ phenotype have been mapped. This was done by a combination of transcript mapping, subcloning, and in vitro mutagenesis. The transcripts are found to be enriched in polyadenylated RNA and are of very low abundance (0.01-0.001% polyadenylated RNA).


2013 ◽  
Vol 94 (5) ◽  
pp. 1134-1144 ◽  
Author(s):  
Abdelmadjid Djoumad ◽  
Fréderic Dallaire ◽  
Christopher J. Lucarotti ◽  
Michel Cusson

Tranosema rostrale ichnovirus (TrIV) is a polydnavirus (PDV) transmitted by the endoparasitic wasp T. rostrale to its host Choristoneura fumiferana during oviposition. PDV genes are expressed in infected caterpillars, causing physiological disturbances that promote the survival of the developing endoparasite. The previously sequenced genome of TrIV contains ~86 genes organized in multigene families and distributed on multiple segments of circular dsDNA. Among these, the ‘T. rostrale virus’ (TrV) family comprises seven genes that are absent in other PDV genomes examined to date and whose function(s) remain(s) unknown. Here, we initiated a functional analysis of the TrV family using qPCR, transfection and RNAi approaches. TrV family genes were weakly expressed in wasp ovaries, but some displayed high transcript abundance in parasitized caterpillars. Whilst TrV1 was the most highly transcribed TrV gene in infected caterpillars, transcript levels for TrV5 and TrV6 were nearly undetectable, indicating that they may be pseudogenes. Temporal and tissue-specific patterns of transcript abundance were similar for all expressed TrV family genes, indicative of an apparent lack of difference in function or tissue specificity. Infection of Cf-203 and Sf-21 insect cells with TrIV led to a dose-dependent inhibition of cell proliferation with no sign of apoptosis. Whilst similar inhibition was observed following transfection of cells with a cloned genome segment carrying the TrV1 gene, RNA interference targeting TrV1 largely restored cell growth in TrIV-infected cells, indicating that TrV1 expression was responsible for the observed inhibition. We suggest that TrV genes may contribute to host developmental disruption by interfering with host-cell proliferation during parasitism.


Sign in / Sign up

Export Citation Format

Share Document