A note on the plastic zone size ahead of the propagating fatigue crack

Author(s):  
Takeo Yokobori ◽  
Masabumi Tnaka
2013 ◽  
Vol 842 ◽  
pp. 455-461
Author(s):  
Yu Sha ◽  
Shi Gang Bai ◽  
Ya Hui Wang

Elastic–plastic finite element analyses have been performed to study the compressive stress effect on fatigue crack growth under applied tension–compression loading. The near crack tip stress, crack tip opening displacement and crack tip plastic zone size were obtained for a kinematic hardening material. The results have shown that the near crack tip local stress, displacement and reverse plastic zone size are controlled by the maximum stress intensity factors Kmax and the applied compressive stress σmaxcom under tension–compression. Based on the finite element analysis results, a fatigue crack propagation model using Kmax and σmaxcom as a parameters under tension–compression loading has been developed.The models under tension–compression loading agreed well with experimental observations.


2005 ◽  
Vol 297-300 ◽  
pp. 66-71 ◽  
Author(s):  
Hyeon Chang Choi

A relationship between fatigue crack opening behavior and the reversed plastic zone size is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack. The contact elements in this analysis are adopted in the mesh of the crack tip area. The smaller element size than reversed plastic zone size is used for evaluating the distribution of reversed plastic zone. In the author’s previous results, the FEA could predict the crack opening level, which the size of crack tip elements was in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone size considering crack opening level obtained by experimental results. It is possible to predict the crack opening level from the reversed plastic zone size calculated by the FEA. We find that the experimental crack opening levels correspond with the opening values of crack tip contact nodes on the calculated reversed plastic zone.


Author(s):  
Y. Yang ◽  
M. Crimp ◽  
R. A. Tomlinson ◽  
E. A. Patterson

A novel approach is introduced to map the mesoscale plastic strain distribution resulting from heterogeneous plastic deformation in complex loading and component geometries, by applying the discrete Fourier transform (DFT) to backscattered electron (BSE) images of polycrystalline patches. These DFTs are then calibrated against the full width at half the maximum of the central peak of the DFTs collected from the same material tested under in situ scanning electron microscopy uniaxial tensile conditions, which indicates a close relationship with the global tensile strain. In this work, the technique is demonstrated by measuring the residual strain distribution and plastic zone size around a fatigue crack tip in a commercially pure titanium compact tension specimen, by collecting BSE images in a 15×15 array of 115 μm square images around the fatigue crack tip. The measurement results show good agreement with the plastic zone size and shape measured using thermoelastic stress analysis.


2011 ◽  
Vol 70 ◽  
pp. 153-158 ◽  
Author(s):  
Rachel A Tomlinson ◽  
Ying Du ◽  
Eann A Patterson

Crack tip plasticity has been investigated using thermoelastic stress analysis (TSA) and digital image correlation (DIC). The plastic zone size at the tip of a propagating fatigue crack was measured using both techniques. At longer crack lengths, the results compared well with Dugdale’s and Irwin’s models for crack tip yielding. The TSA methodology requires careful observation of the adiabatic assumption.


Sign in / Sign up

Export Citation Format

Share Document