Plasma insulin levels and?-adrenoceptor antagonists. Relevance of the steric configuration of?-adrenoceptor antagonists to their effect on glucose tolerance

1983 ◽  
Vol 324 (1) ◽  
pp. 46-49 ◽  
Author(s):  
A. Beck ◽  
W. Conca ◽  
S. Bacher ◽  
G. Raberger
1983 ◽  
Vol 245 (6) ◽  
pp. E575-E581 ◽  
Author(s):  
A. L. Vallerand ◽  
J. Lupien ◽  
L. J. Bukowiecki

The metabolic interactions of cold exposure, cold acclimation, and starvation on glucose tolerance and plasma insulin levels were studied in precannulated, unrestrained, and unanesthetized rats. Cold exposure (48 h at 5 degrees C) significantly reduced the insulin response to intravenous glucose injection (P less than 0.01) while improving glucose tolerance (P less than 0.01). Starvation (48 h at 25 degrees C) also reduced the insulin response (P less than 0.01) but did not significantly alter glucose tolerance. “Accelerated starvation” induced by starving rats for 48 h at 5 degrees C dramatically reduced both basal and glucose-stimulated insulin levels while even improving glucose tolerance, resulting in a 15-fold reduction in the insulinogenic index. Cold acclimation (3 wk at 5 degrees C) induced essentially the same alterations as cold exposure. Approximately reversed changes were observed when cold-acclimated rats were returned to a warm environment for 15–18 h. Results from these studies indicate that 1) cold exposure and starvation, but not cold acclimation, act synergistically in decreasing the sensitivity and/or the capacity of pancreatic islets for secreting insulin in response to glucose stimulation; 2) glucose tolerance and possibly insulin sensitivity of peripheral tissues are enhanced by cold exposure and starvation, although glucose tolerance is improved by cold exposure only, not by starvation; 3) an improved glucose tolerance with barely detectable plasma insulin levels was obtained in cold-starved rats under normal physiological conditions.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ezarul Faradianna Lokman ◽  
Harvest F. Gu ◽  
Wan Nazaimoon Wan Mohamud ◽  
Claes-Göran Östenson

Aims. To evaluate the antidiabetic effects ofGynostemma pentaphyllum(GP) in Goto-Kakizaki (GK) rat, an animal model of type 2 diabetes, and to investigate the mechanisms of insulin release.Methods. Oral glucose tolerance test was performed and plasma insulin levels were measured.Results. An oral treatment withGP(0.3 g/kg of body weight daily) for two weeks in GK rats improved glucose tolerance versus placebo group (P<0.01). Plasma insulin levels were significantly increased in theGP-treated group. The insulin release fromGP-treated GK rats was 1.9-fold higher as compared to the control group (P<0.001).GPstimulated insulin release in isolated GK rat islets at high glucose. Opening of ATP-sensitive potassium (K-ATP) channels by diazoxide and inhibition of calcium channels by nifedipine significantly decreased insulin response toGP. Furthermore, the protein kinase A (PKA) inhibitor H89 decreased the insulin response toGP(P<0.05). In addition,GP-induced insulin secretion was decreased after preincubation of GK islets with pertussis toxin to inhibit exocytoticGeproteins (P<0.05).Conclusion.The antidiabetic effect ofGPis associated with the stimulation of insulin release from the islets.GP-induced insulin release is partly mediated via K-ATP and L-type Ca2+channels, the PKA system and also dependent on pertussis toxin sensitiveGe-protein.


1979 ◽  
Vol 8 (2) ◽  
pp. 65-74 ◽  
Author(s):  
W. S. SOERJODIBROTO ◽  
C. R. C. HEARD ◽  
A. N. EXTON-SMITH

2017 ◽  
Vol 43 (4) ◽  
pp. 1689-1702 ◽  
Author(s):  
Peddanna Kotha ◽  
Kameswara Rao Badri ◽  
Ramya Nagalapuram ◽  
Rajasekhar Allagadda ◽  
Appa Rao Chippada

Background/Aims: Diabetes mellitus is a pandemic metabolic disorder that is affecting a majority of populations in recent years. There is a requirement for new drugs that are safer and cheaper due to the side effects associated with the available medications. Methods: We investigated the anti-diabetic activity of leaves of Anisomeles malabarica following bioactivity guided fractionation. The different solvent (hexane, ethyl acetate, methanol and water) extracts of A. malabarica leaves were used in acute treatment studies to evaluate and identify the active fraction. The ethyl acetate extract was subjected to further fractionation using silica gel column chromatography and the compounds were identified by LC-SRM/MS and GC-MS. Additional chronic treatment studies were carried out using this active fraction (AMAF) for 30 days in experimental diabetic rats. Fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), plasma insulin levels and glucose tolerance were measured along with insulin resistance/sensitivity indicators (HOMA-IR, HOMA-β and QUICKI) to assess the beneficial effects of A. malabarica in the management of diabetes mellitus. Results: Among the different solvent extracts tested, ethyl acetate extract showed maximum (66%) anti-hyperglycemic activity. The hexane and ethyl acetate (1: 1) fraction that has maximum anti-diabetic activity was identified as active fraction of A. malabarica (AMAF). The FBG, HbA1c, plasma insulin levels and insulin sensitivity/resistance indicators such as glucose tolerance, HOMA-IR, HOMA-β and QUICKI were significantly improved to near normal in diabetic rats treated with AMAF. Further, we identified key flavonoids and fatty acids as the anti-diabetic active principles from the AMAF of A. malabarica leaves. Conclusion: The results of our study suggest that Anisomeles malabarica has potential anti-diabetic activity in STZ induced diabetic rats.


1993 ◽  
Vol 265 (5) ◽  
pp. R1109-R1114 ◽  
Author(s):  
C. J. De Souza ◽  
A. H. Meier

The ability of timed daily increases in ambient temperature (from 22 +/- 1 degree C to 40 +/- 1 degree C for 2 h) to alter body fat stores, blood lipid levels, and insulin resistance were tested in male Holtzman rats. Of the six times of day tested only temperature pulses administered 16 h after light onset consistently decreased body weights, retroperitoneal fat stores, and plasma insulin levels. Subsequently, temperature pulses were administered either 0 (TP0) or 16 (TP16) h after light onset (light-dark 12:12 h). While no differences were observed between the TP0 group and the constant temperature (22 degrees C) controls, decreases in body weight gain, food consumption, retroperitoneal fat stores, and plasma concentrations of insulin, cholesterol, and triglycerides were consistently observed in the TP16 group. Although changes in plasma glucose during an oral glucose tolerance test were similar when the two treatment groups were compared with their respective controls, glucose tolerance was achieved with less insulin in the TP16 animals than in their respective controls. Insulin effectiveness was greater in the TP16 group as indicated by a decrease in plasma glucose, after insulin injection, that was of greater magnitude and longer duration than in controls. Hence, timed daily increases in ambient temperature may decrease obesity in part by decreasing plasma insulin levels apparently as a consequence of increased tissue sensitivity to insulin (greater glucose tolerance and less insulin intolerance). Because the treatment is effective only at a particular time of day the findings support a role for circadian neuroendocrine interactions in the regulation of these metabolic states.


1976 ◽  
Vol 54 (6) ◽  
pp. 870-875 ◽  
Author(s):  
Suzanne Rousseau-Migneron ◽  
André Nadeau ◽  
Jacques LeBlanc

To determine whether rats could adapt to a chronic exogenous supply of adrenaline by a decrease in the well-known inhibitory effect of adrenaline on insulin secretion, plasma glucose and insulin levels were measured in unanesthetized control and adrenaline-treated rats (300 μg/kg twice a day for 28 days) during an adrenaline infusion (0.75 μg kg−1 min−1), after an acute glucose load (0.5 g/kg), and during the simultaneous administration of both agents. Chronic treatment with adrenaline did not modify the initial glucose levels but it greatly diminished the basal insulin values (21.57 ± 2.48 vs. 44.69 ± 3.3 μU/ml, p < 0.01). In the control rats, despite the elevated glucose concentrations, a significant drop in plasma insulin levels was observed within the first 15 min of adrenaline infusion, followed by a period of recovery. In the adrenaline-treated group, in which plasma glucose levels were lower than in control animals, plasma insulin levels did not drop as in control rats, but a significant increase was found after 30 min of infusion. During the intravenous glucose tolerance test, the plasma glucose and insulin responses showed similar patterns; however, during the concomitant adrenaline infusion, the treated rats showed a better glucose tolerance than their controls. These results indicate that rats chronically treated with adrenaline adapt to the diabetogenic effect of an infusion of adrenaline by having a lower inhibition of insulin release, although the lower basal insulin levels may indicate a greater sensitivity to endogenous insulin.


Diabetes Care ◽  
1995 ◽  
Vol 18 (3) ◽  
pp. 292-299 ◽  
Author(s):  
A. Tchernof ◽  
J.-P. Despres ◽  
A. Dupont ◽  
A. Belanger ◽  
A. Nadeau ◽  
...  

1985 ◽  
Vol 32 (4) ◽  
pp. 285-291 ◽  
Author(s):  
TEIJI HAMADA ◽  
KIYOTAKA YOSHIMATSU ◽  
TOSHIYUKI OOSHIMA ◽  
NORIO KUBO ◽  
JUNJI ISHIMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document