Submm/FAR-infrared observations of cold and warm dust clouds

1986 ◽  
Vol 128 (1) ◽  
pp. 111-124
Author(s):  
P. G. Mezger
1997 ◽  
Vol 163 ◽  
pp. 725-726
Author(s):  
K.-W. Hodapp ◽  
E. F. Ladd

Stars in the earliest phases of their formation, i.e., those accreting the main component of their final mass, are deeply embedded within dense cores of dust and molecular material. Because of the high line-of-sight extinction and the large amount of circumstellar material, stellar emission is reprocessed by dust into long wavelength radiation, typically in the far-infrared and sub-millimeter bands. Consequently, the youngest sources are strong submillimeter continuum sources, and often undetectable as point sources in the near-infrared and optical. The most deeply embedded of these sources have been labelled “Class 0” sources by André, Ward-Thompson, & Barsony (1994), in an extension of the spectral energy distribution classification scheme first proposed by Adams, Lada, & Shu (1987).


1982 ◽  
Author(s):  
W. A. Dent ◽  
M. W. Werner ◽  
I. Gatley ◽  
E. E. Becklin ◽  
R. H. Hildebrand ◽  
...  

2020 ◽  
Author(s):  
Richard J. Bantges ◽  
Helen E. Brindley ◽  
Jonathan E. Murray ◽  
Alan E. Last ◽  
Cathryn Fox ◽  
...  

Abstract. Measurements of mid- to far-infrared nadir radiances obtained from the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft during the Cirrus Coupled Cloud-Radiation Experiment (CIRCCREX) are used to assess the performance of various ice cloud bulk optical (single-scattering) property models. Through use of a minimisation approach, we find that the simulations can reproduce the observed spectra in the mid-infrared to within measurement uncertainty but are unable to simultaneously match the observations over the far-infrared frequency range. When both mid and far-infrared observations are used to minimise residuals, first order estimates of the flux differences between the best performing simulations and observations indicate a strong compensation effect between the mid and far infrared such that the absolute broadband difference is


Sign in / Sign up

Export Citation Format

Share Document