Measurement of internal stresses and of the temperature dependence of the matrix yield stress in metal matrix composites from thermal expansion curves

1990 ◽  
Vol 9 (3) ◽  
pp. 340-342 ◽  
Author(s):  
D. Masutti ◽  
J. P. Lentz ◽  
F. Delannay
Author(s):  
Kenneth S. Vecchio

It has been well documented that when a large difference in the coefficients of thermal expansion (CTE) exist between the matrix and reinforcement in metal-matrix composites (MMCs) internal stresses can develop which are sufficiently high to generate dislocations at the reinforcement/matrix interface. Numerous observations have been made of this phenomenon via TEM which have shown a variety of different dislocation substructures and dislocation punching mechanisms. An important consequence of this phenomenon is that the metal matrix becomes strain hardened as the dislocation density increases, thereby reducing subsequent plastic flow of the matrix. One notable feature of the dislocation punching mechanism is that prismatic dislocation loops are commonly observed emanating from the interface. In two recent studies it was found that dislocations were not emitted immediately upon cooling, but rather at some lower critical temperature. A number of microstructural and processing parameters can affect the thermally-induced dislocation substructure such as: a) differences in CTEs, b) lattice frictional stress, c) vol.% particulate, d) particle/matrix interface morphology, e) quench temperatures (ΔT effect), and f) thermal-cycling (e.g. reheating and requenching).


Author(s):  
P. K. Wright

Metal matrix composites (MMC) are expected to develop internal residual stresses on cooling from fabrication due to the large thermal expansion mismatch between reinforcing fibers and the matrix. This work was undertaken to experimentally measure these residual stresses and compare them with analytical calculations in order to clearly establish their levels and dependence on material parameters. Two techniques for residual stress measurement were investigated: 1) Xray diffraction (sin2 psi method) and 2) neutron diffraction. Both techniques gave results in good agreement with analytical predictions for several systems (SCS-6/Ti-24Al-11Nb, W/NiAl, and Al2O3NiAl). The results obtained showed a dependence of residual stresses on thermal expansion coefficients, elastic moduli, volume fraction fibers, and matrix yield strengths. The fibers showed compressive stress states, and the matrix, tension. Average stresses were higher in the fiber direction than transverse to fibers.


2011 ◽  
Vol 264-265 ◽  
pp. 663-668 ◽  
Author(s):  
B. Karthikeyan ◽  
S. Ramanathan ◽  
V. Ramakrishnan

The demand of today’s and future spacecrafts for a stable platform for critical payloads is the driving force behind the coefficient of thermal expansion (CTE) measurement of different aerospace materials. The CTE of a composite is different from that given by a simple rule of mixtures. This is because of the presence of reinforcement. The expansion coefficient of reinforcement is less than that of the matrix which introduces a mechanical constraint on the matrix. The degree of constraint is also dependent on the nature of the reinforcement. It is important to point out that interface can exert some influence on the value of CTE, especially for very small particle size. In addition to the interface, the CTE of particle reinforced metal matrix composites (MMCs) is affected by several other factors. To cater the needs of various requirements in a spacecraft making, a wide variety of materials are used. Besides, the indigenization efforts and development of new materials for space-use emphasizes the measurement of CTE before their actual use. Stir casting technique was used to fabricate composites containing Si Cp as reinforcements and special thermo physical properties of the material are found. CTE of the composites are measured by TMA. The experiments have been carried out in the temperature range -1400 C to 5750 C.


1994 ◽  
Vol 116 (3) ◽  
pp. 605-610 ◽  
Author(s):  
P. K. Wright

Metal matrix composites (MMC) are expected to develop internal residual stresses on cooling from fabrication due to the large thermal expansion mismatch between reinforcing fibers and the matrix. This work was undertaken to measure experimentally these residual stresses and compare them with analytical calculations in order to establish clearly their levels and dependence on material parameters. Two techniques for residual stress measurement were investigated: (1) X-ray diffraction (sin2-psi method) and (2) neutron diffraction. Both techniques gave results in good agreement with analytical predictions for several systems (SCS-6/Ti-24Al-11Nb, W/NiAl, and Al2O3NiAl). The results obtained showed a dependence of residual stresses on thermal expansion coefficients, elastic moduli, volume fraction fibers, and matrix yield strengths. The fibers showed compressive stress states, and the matrix, tension. Average stresses were higher in the fiber direction than transverse to fibers.


1988 ◽  
Vol 142 ◽  
Author(s):  
Rahmi Yazici ◽  
K. E. Bagnoli ◽  
Y. Bae

AbstractIn this study the progression of thermally and mechanically induced internal strains (stresses) in metal-matrix composites was investigated by X-ray methods. The materials studied were whisker-reinforced 2124 Al-SiC(w) and 6061 Al- SiC(w) composites. X-ray diffractometry was used to measure thermally induced stresses on samples cycled from ambient to 280°C. Significant variations in residual stress values were observed in the matrix depending on the location and direction of the measurements with respect to the whisker orientation. The determined stress states of the as-processed and the thermally cycled samples were evaluated with continuum models. The microstrains in composites induced during processing and tensile loading were also investigated by nondestructive means. Individual grains of the matrix were analyzed by rocking-curve measurements using a modified X-ray doublecrystal diffractometer. The relationship between the plastic deformation induced by applied loads and the progression of the microstrain/excess-dislocation values was determined.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1400
Author(s):  
Peter Baumli

The paper reviews the preparation of the different metallic nanocomposites. In the preparation of composites, especially in the case of nanocomposites, interfacial phenomena play an important role. This review summarizes the literature on various interfacial phenomena, such as wettability and reactivity in the case of casting techniques and colloidal behavior in the case of electrochemical and electroless methods. The main contribution of this work lies in the evaluation of collected interfacial phenomena and difficulties in the production of metal matrix composites, for both nano-sized and micro-sized reinforcements. This study can guide the composite maker in choosing the best criteria for producing metal matrix composites, which means a real interface with good adhesion between the matrix and the reinforcement. This criterion results in desirable mechanical and physical properties and homogenous dispersion of the reinforcement in the matrix.


1989 ◽  
Vol 111 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Z. G. Zhu ◽  
G. J. Weng

A multiaxial theory of creep deformation for particle-strengthened metal-matrix composites is derived. This derivation is based on the observation that there are two major sources of creep resistance in such a system. The first, or metallurgical effect, arises from the increased difficulty of dislocation motion in the presence of particles and is accounted for by a size- and concentration dependent constitutive equation for the matrix. The second, or mechanics effect, is due to the continuous transfer of stress from the ductile matrix to the hard particles and the corresponding stress redistribution is also incorporated in the derivation. Both power-law creep and exponential creep in the matrix, each involving the transient as well as the steady state, are considered. The constitutive equations thus derived can provide the development of creep strain of the composite under a combined stress. The multiaxial theory is also simplified to a uniaxial one, whose explicit stress-creep strain-time relations at a given concentration of particles are also given by a first- and second-order approximation. The uniaxial theory is used to predict the creep deformation of an oxide-strengthened cobalt, and the results are in reasonably good agreement with the experiment. Finally, it is demonstrated that a simple metallurgical approach without considering the stress redistribution between the two constituent phases, or a simple mechanics approach without using a modified constitutive equation for the metal matrix, may each underestimate the creep resistance of the composite, and, therefore, it is important that both factors be considered in the formulation of such a theory.


Sign in / Sign up

Export Citation Format

Share Document