Effective approximate solutions of two mixed problems of steady-state heat conduction under conditions of convective heat transfer

1970 ◽  
Vol 19 (4) ◽  
pp. 1314-1319 ◽  
Author(s):  
Yu. Ya. Iossel ◽  
R. A. Pavlovskii
Author(s):  
Humberto Alves da Silveira Monteiro ◽  
Guilherme Garcia Botelho ◽  
Roque Luiz da Silva Pitangueira ◽  
Rodrigo Peixoto ◽  
FELICIO BARROS

Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 266
Author(s):  
Péter German ◽  
Mauricio E. Tano ◽  
Carlo Fiorina ◽  
Jean C. Ragusa

This work presents a data-driven Reduced-Order Model (ROM) for parametric convective heat transfer problems in porous media. The intrusive Proper Orthogonal Decomposition aided Reduced-Basis (POD-RB) technique is employed to reduce the porous medium formulation of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations coupled with heat transfer. Instead of resolving the exact flow configuration with high fidelity, the porous medium formulation solves a homogenized flow in which the fluid-structure interactions are captured via volumetric flow resistances with nonlinear, semi-empirical friction correlations. A supremizer approach is implemented for the stabilization of the reduced fluid dynamics equations. The reduced nonlinear flow resistances are treated using the Discrete Empirical Interpolation Method (DEIM), while the turbulent eddy viscosity and diffusivity are approximated by adopting a Radial Basis Function (RBF) interpolation-based approach. The proposed method is tested using a 2D numerical model of the Molten Salt Fast Reactor (MSFR), which involves the simulation of both clean and porous medium regions in the same domain. For the steady-state example, five model parameters are considered to be uncertain: the magnitude of the pumping force, the external coolant temperature, the heat transfer coefficient, the thermal expansion coefficient, and the Prandtl number. For transient scenarios, on the other hand, the coastdown-time of the pump is the only uncertain parameter. The results indicate that the POD-RB-ROMs are suitable for the reduction of similar problems. The relative L2 errors are below 3.34% for every field of interest for all cases analyzed, while the speedup factors vary between 54 (transient) and 40,000 (steady-state).


Author(s):  
B. H. Smaill ◽  
J. Douglas ◽  
P. J. Hunter ◽  
I. Anderson

1971 ◽  
Vol 93 (4) ◽  
pp. 449-454 ◽  
Author(s):  
D. M. France

A method of obtaining an analytical solution to two-dimensional steady-state heat-conduction problems with irregularly shaped boundaries is presented. The technique of obtaining the coefficients to the series solution via a direct least-squares approach is compared to the “point-matching” scheme. The two methods were applied to problems with known solutions involving the three heat-transfer boundary conditions, temperature, heat flux, and convection coefficient specified. Increased accuracy with substantially fewer terms in the series solution was obtained via the least-squares technique.


Sign in / Sign up

Export Citation Format

Share Document