Analysis of lattice thermal conductivity of GaAs at high temperatures

1978 ◽  
Vol 14 (3) ◽  
pp. 213-219 ◽  
Author(s):  
K. S. Dubey
1995 ◽  
Vol 27/28 (5) ◽  
pp. 457-466
Author(s):  
Madabhushi Chari ◽  
Pramila Aggarwal

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 337 ◽  
Author(s):  
Weon Ho Shin ◽  
Hyun-Sik Kim ◽  
Se Yun Kim ◽  
Sung-sil Choo ◽  
Seok-won Hong ◽  
...  

Significant bipolar conduction of the carriers in Bi2Te3-based alloys occurs at high temperatures due to their narrow bandgaps. Therefore, at high temperatures, their Seebeck coefficients decrease, the bipolar thermal conductivities rapidly increase, and the thermoelectric figure of merit, zT, rapidly decreases. In this study, band modification of n-type Cu0.008Bi2(Te,Se)3 alloys by sulfur (S) doping, which could widen the bandgap, is investigated regarding carrier transport properties and bipolar thermal conductivity. The increase in bandgap by S doping is demonstrated by the Goldsmid–Sharp estimation. The bipolar conduction reduction is shown in the carrier transport characteristics and thermal conductivity. In addition, S doping induces an additional point-defect scattering of phonons, which decreases the lattice thermal conductivity. Thus, the total thermal conductivity of the S-doped sample is reduced. Despite the reduced power factor due to the unfavorable change in the conduction band, zT at high temperatures is increased by S doping with simultaneous reductions in bipolar and lattice thermal conductivity.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


Sign in / Sign up

Export Citation Format

Share Document