Influence of the visual cortex upon collicular evoked responses in the rabbit

1976 ◽  
Vol 32 (1) ◽  
pp. 72-74 ◽  
Author(s):  
S. Molotchnikoff ◽  
M. Dubuc ◽  
J. R. Brunette
2018 ◽  
Vol 120 (6) ◽  
pp. 3063-3076 ◽  
Author(s):  
Camilo Ferrer ◽  
Helen Hsieh ◽  
Lonnie P. Wollmuth

Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit dynamics. In terms of the excitation driving PV interneuron activity, the N-methyl-d-aspartate receptor (NMDAR)-mediated component onto PV interneurons tends to be smaller than that onto pyramidal neurons but makes a significant contribution to their physiology and development. In the visual cortex, PV interneurons mature during the critical period. We hypothesize that during the critical period, the NMDAR-mediated signaling and functional properties of glutamatergic synapses onto PV interneurons are developmentally regulated. We therefore compared the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and NMDAR-mediated synaptic responses before (postnatal days 15–20, P15–P20), during (P25–P40), and after (P50–P60) the visual critical period. AMPAR miniature excitatory postsynaptic currents (mEPSCs) showed a developmental decrease in frequency, whereas NMDAR mEPSCs were absent or showed extremely low frequencies throughout development. For evoked responses, we consistently saw a NMDAR-mediated component, suggesting pre- or postsynaptic differences between evoked and spontaneous neurotransmission. Evoked responses showed input-specific developmental changes. For intralaminar inputs, the NMDAR-mediated component significantly decreased with development. This resulted in adult intralaminar inputs almost exclusively mediated by AMPARs, suited for the computation of synaptic inputs with precise timing, and likely having NMDAR-independent forms of plasticity. In contrast, interlaminar inputs maintained a stable NMDAR-mediated component throughout development but had a shift in the AMPAR paired-pulse ratio from depression to facilitation. Adult interlaminar inputs with facilitating AMPAR responses and a substantial NMDAR component would favor temporal integration of synaptic responses and could be modulated by NMDAR-dependent forms of plasticity. NEW & NOTEWORTHY We show for the first time input-specific developmental changes in the N-methyl-d-aspartate receptor component and short-term plasticity of the excitatory drive onto layers 2/3 parvalbumin-expressing (PV) interneurons in the visual cortex during the critical period. These developmental changes would lead to functionally distinct adult intralaminar and interlaminar glutamatergic inputs that would engage PV interneuron-mediated inhibition differently.


Author(s):  
Stéphane Molotchnikoff ◽  
Michel Dubuc

SummaryThe responsiveness of the visual cortex (VC) and superior colliculus (SC) was simultaneously compared following conditioning “ON” or “OFF” stimulation, in the rabbit.Average evoked responses were recorded simultaneously from the visual cortex and superior colliculus. “ON” or “OFF” steps constituted the conditioning stimuli whereas the test stimulus consisted of optic nerve stimulation. All evoked responses exhibited a reversal of their polarity when the electrode was moved in the dorsoventral direction (Negative-Positive in the SC, Positive-Negative in the VC). This assured the somato-dentritic origin of the potentials. The results showed that responsiveness in both structures was significantly higher following an “OFF” stimulus than after an “ON” step. Collicular responsiveness was higher than in the VC when the same conditioning stimulus was applied. The spatial distribution of the source of “OFF” responses was circumscribed to the ventral part of the superficial layer of the superior colliculus. These results suggest specific properties associated with the brightening and dimming systems.


PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e30727 ◽  
Author(s):  
Britta Graewe ◽  
Peter De Weerd ◽  
Reza Farivar ◽  
Miguel Castelo-Branco

2019 ◽  
Author(s):  
Ashley M. Wilson ◽  
Jeffrey M. Beck ◽  
Lindsey L. Glickfeld

AbstractAttentional modulation of neuronal activity in sensory cortex could alter perception by enhancing the local representation of attended stimuli or its behavioral read-out downstream. We tested these hypotheses using a task in which mice are cued on interleaved trials to attend visual or auditory targets. Neurons in primary visual cortex (V1) that encode task stimuli have larger visually-evoked responses when attention is directed toward vision. To determine whether the attention-dependent changes in V1 reflect changes in representation or read-out, we decoded task stimuli and choices from population activity. Surprisingly, both visual and auditory choices can be decoded from V1, but decoding takes advantage of unique activity patterns across modalities. Furthermore, decoding of choices, but not stimuli, is impaired when attention is directed toward the opposite modality. The specific effect on choice suggests behavioral improvements with attention are largely due to targeted read-out of the most informative V1 neurons.


1999 ◽  
Vol 16 (3) ◽  
pp. 541-555 ◽  
Author(s):  
YI ZHANG ◽  
RICHARD D. MOONEY ◽  
ROBERT W. RHOADES

Single-unit recording and micropressure ejection techniques were used to test the effects of norepinephrine (NE) on the responses of neurons in the superficial layers (the stratum griseum superficiale and stratum opticum) of the hamster's superior colliculus (SC). Application of NE suppressed visually evoked responses by ≥30% in 75% of 40 neurons tested and produced ≥30% augmentation of responses in only 5%. The decrement in response strength was mimicked by application of the α2 adrenoceptor agonist, p-aminoclonidine, the nonspecific β agonist, isoproterenol, and the β1 agonist, dobutamine. These agents had similar effects on responses evoked by electrical stimulation of the optic chiasm and visual cortex. The α1 agonist, methoxamine, augmented the light-evoked responses of 53% of 49 SC cells by ≥30%, but had little effect on responses evoked by electrical stimulation of optic chiasm or visual cortex. The effects of adrenergic agonists upon the glutamate-evoked responses of SC cells that were synaptically “isolated” by concurrent application of Mg2+ were similar to those obtained during visual stimulation. Analysis of effects of NE on visually evoked and background activity indicated that application of this amine did not significantly enhance signal-to-noise ratios for most superficial layer SC neurons, and signal-to-noise ratios were in some cases reduced. These results indicate that NE acts primarily through α2 and β1 receptors to suppress the visual responses of SC neurons. Activation of either of these receptors reduces the responses of SC neurons to either of their two major visual inputs as well as to direct stimulation by glutamate, and it would thus appear that these effects are primarily postsynaptic.


1965 ◽  
Vol 16 (3_suppl) ◽  
pp. 1323-1324
Author(s):  
S. Thomas Elder ◽  
Roberto Guerrero-Figueroa

After repeated paired presentations of sound and light while recording from the visual cortex, sound was presented alone and a CR was observed.


Sign in / Sign up

Export Citation Format

Share Document