Continuous-time Markov processes as a stochastic model for sedimentation

1991 ◽  
Vol 23 (3) ◽  
pp. 297-304 ◽  
Author(s):  
W. A. Rolke
Author(s):  
W. P. Malcom ◽  
Lakhdar Aggoun ◽  
Mohamed Al-Lawati

In this paper we develop a stochastic model incorporating a double-Markov modulated mean-reversion model. Unlike a price process the basis process X can take positive or negative values. This model is based on an explicit discretisation of the corresponding continuous time dynamics. The new feature in our model is that we suppose the mean reverting level in our dynamics as well as the noise coefficient can change according to the states of some finite-state Markov processes which could be the economy and some other unseen random phenomenon.  


1998 ◽  
Vol 37 (1) ◽  
pp. 179-185
Author(s):  
Morten Grum

On evaluating the present or future state of integrated urban water systems, sewer drainage models, with rainfall as primary input, are often used to calculate the expected return periods of given detrimental acute pollution events and the uncertainty thereof. The model studied in the present paper incorporates notions of physical theory in a stochastic model of water level and particulate chemical oxygen demand (COD) at the overflow point of a Dutch combined sewer system. A stochastic model based on physical mechanisms has been formulated in continuous time. The extended Kalman filter has been used in conjunction with a maximum likelihood criteria and a non-linear state space formulation to decompose the error term into system noise terms and measurement errors. The bias generally obtained in deterministic modelling, by invariably and often inappropriately assuming all error to result from measurement inaccuracies, is thus avoided. Continuous time stochastic modelling incorporating physical, chemical and biological theory presents a possible modelling alternative. These preliminary results suggest that further work is needed in order to fully appreciate the method's potential and limitations in the field of urban runoff pollution modelling.


2008 ◽  
Vol 28 (2) ◽  
pp. 355-375 ◽  
Author(s):  
Márcio das Chagas Moura ◽  
Enrique López Droguett

In this work it is proposed a model for the assessment of availability measure of fault tolerant systems based on the integration of continuous time semi-Markov processes and Bayesian belief networks. This integration results in a hybrid stochastic model that is able to represent the dynamic characteristics of a system as well as to deal with cause-effect relationships among external factors such as environmental and operational conditions. The hybrid model also allows for uncertainty propagation on the system availability. It is also proposed a numerical procedure for the solution of the state probability equations of semi-Markov processes described in terms of transition rates. The numerical procedure is based on the application of Laplace transforms that are inverted by the Gauss quadrature method known as Gauss Legendre. The hybrid model and numerical procedure are illustrated by means of an example of application in the context of fault tolerant systems.


Sign in / Sign up

Export Citation Format

Share Document