Solvent effect and temperature dependence in the interaction of singlet oxygen with α-phenyl-N-tert-butyl nitrone

1986 ◽  
Vol 105 (5) ◽  
pp. 303-308
Author(s):  
A. P. Darmanyan ◽  
G. Móger
1998 ◽  
Vol 76 (12) ◽  
pp. 1805-1816
Author(s):  
L Ross C Barclay ◽  
Jennifer K Grandy ◽  
Heather D MacKinnon ◽  
Heather C Nichol ◽  
Melinda R Vinqvist

3,5-Di-tert-butyl-ortho-quinone, 6, and 1-(3,4-dimethoxyphenyl-2-(2-methoxyphenoxy)-1-propanone, 7, models for oxidized lignin and for lignin, were used as sensitizers of photo-oxidation. Product studies by HPLC from oxidation of methyl linoleate in solution sensitized by 6 or 7, and in sodium dodecyl sulfate (SDS) sensitized by 6, showed a product distribution of six hydroperoxides, the four conjugated 9- and 13-hydroperoxides of the geometrical isomers: trans-10, cis-12 (2), cis-9, trans-11 (3), trans-10, trans-12 (4), and trans-9, trans-11 (5)-octadecadienoates plus two nonconjugated hydroperoxides. The higher cis/trans to trans/trans (ct/tt) of geometrical isomers (2 + 3//4 + 5) compared to ct/tt from known thermal free-radical peroxidations (Type 1) indicate that singlet oxygen (Type 2) oxidation occurs in reactions sensitized by 6 or 7. Kinetic studies by oxygen uptake are reported on oxidations of hydrocarbons 1-phenyl-2-methylpropene,8, and trans-stilbene,9, sensitized by the quinone, 6, or by a dye, Rose Bengal. Quenching studies imply singlet oxygen reactions. Milled wood lignin undergoes self-initiated photo-oxidation in water, and oxygen uptake was quenched by sodium azide. Cellobiose, a cellulose model, undergoes sensitized photo-oxidation using model quinone, 6, in a mixture of tert-butyl alcohol and water or using the sensitizers benzophenone or the lignin model, 7, delivered on a solid support, silica gel, and these oxidations were quenched with sodium azide. These results implicate singlet oxygen in the photo-yellowing of high lignin content wood pulps.Key words: lignin models, ortho-quinone, photo-oxidation, singlet oxygen, lignin, cellobiose.


1979 ◽  
Vol 57 (5) ◽  
pp. 500-502 ◽  
Author(s):  
Joaquim Jose Moura Ramos ◽  
Jacques Reisse ◽  
M. H. Abraham

A new treatment of the solvent effect on the solvolysis of tert-butyl chloride is proposed. This treatment is based on activation free energy measurements and on transfer free energy measurements of the reactant (R) on the one hand and of a model (M) of the activated complex (AC) on the other hand. Solute–solvent interaction free energies for the reactant, the activated complex and the model compound are estimated. This estimation involves the calculation of the free energy of cavity formation of these various solutes (R, AC, and M) in all the solvents. These cavity terms, which are a function of the cohesive properties of the solvent and of the surface of the cavity do not reflect the electronic structure of the solute whereas the interaction free energy term does. The method we propose can be described as a new 'experimental' approach for the study of the charge separation in an activated complex.


1994 ◽  
Vol 35 (27) ◽  
pp. 4723-4726 ◽  
Author(s):  
Edward L. Clennan ◽  
Dongyi Wang ◽  
Houwen Zhang ◽  
Christine H. Clifton

Tetrahedron ◽  
2004 ◽  
Vol 60 (34) ◽  
pp. 7419-7425 ◽  
Author(s):  
Harry H. Wasserman ◽  
Mingde Xia ◽  
Jianji Wang ◽  
Anders K. Petersen ◽  
Michael Jorgensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document