Thermodynamic efficiency of the heat-and-power cycle of a gas-turbine plant

1998 ◽  
Vol 34 (2) ◽  
pp. 96-99 ◽  
Author(s):  
V. I. Evenko
Author(s):  
James Morrash

Today many utilities are confronted with the problem of increasing their generating capacity to shave system peaks. By the nature of being a complete power cycle, the gas turbine appears as an attractive prime mover in this type application. This paper describes a 22-mw decentralized gas-turbine generating station designed specifically for peaking service. The philosophy of the design of the equipment and its arrangement in the plant is included along with a description of its control and operation.


Author(s):  
N. Tauveron ◽  
S. Colasson ◽  
J.-A. Gruss

The conversion of heat into electricity, generally speaking heat-to-power generation, is a wide area of technologies and applications. This paper focuses on available systems, excepted the internal combustion cycles, applied to transform (waste) heat to power. Data of referenced market proved or time-to-market technologies are presented. A database of more than 1100 references has been built. The following categories can be found: Rankine Cycle plant, Organic Rankine Cycle plant, Steam engine, Kalina Cycle plant, Brayton cycle plant, micro gas turbine, closed cycle gas turbine plant, combined cycle gas turbine plant, Stirling engine, Ericsson engine and thermoelectric generator. We intentionally target a range of power from Watts to hundreds of MW, covering the range of temperature [80–1000°C] usually addressed by these systems. The comparison of performances is hereby discussed and compared to thermodynamic principles and theoretical results in the graph Maximum temperature [°C] versus Thermodynamic efficiency. Comparison with Carnot and Chambadal-Novikov-Curzon-Ahlborn efficiencies are performed. A more original contribution is the presentation of the graph Power [W] versus Thermodynamic efficiency. The analysis reveals a monotonous trend inside each technology. Furthermore this general behavior covers a very wide range of power, including technological transitions. Finally, the position of each technology in the map Maximum temperature [°C] versus Power [W] is also analyzed. Explanations based on thermodynamics and techno-economic approaches are proposed.


2014 ◽  
Vol 659 ◽  
pp. 503-508
Author(s):  
Sorin Gabriel Vernica ◽  
Aneta Hazi ◽  
Gheorghe Hazi

Increasing the energy efficiency of a gas turbine plant can be achieved by exhaust gas heat recovery in a recovery boiler. Establishing some correlations between the parameters of the boiler and of the turbine is done usually based on mathematical models. In this paper it is determined from experimental point of view, the effectiveness of a heat recovery boiler, which operates together with a gas turbine power plant. Starting from the scheme for framing the measurement devices, we have developed a measurement procedure of the experimental data. For experimental data processing is applied the effectiveness - number of transfer unit method. Based on these experimental data we establish correlations between the recovery boiler effectiveness and the gas turbine plant characteristics. The method can be adapted depending on the type of flow in the recovery boiler.


Author(s):  
Shusheng Zang ◽  
Jaqiang Pan

The design of a modern Linear Quadratic Regulator (LQR) is described for a test steam injected gas turbine (STIG) unit. The LQR controller is obtained by using the fuel flow rate and the injected steam flow rate as the output parameters. To meet the goal of the shaft speed control, a classical Proportional Differential (PD) controller is compared to the LQR controller design. The control performance of the dynamic response of the STIG plant in the case of rejection of load is evaluated. The results of the computer simulation show a remarkable improvement on the dynamic performance of the STIG unit.


2021 ◽  
Vol 2 (43) ◽  
pp. 20-35
Author(s):  
Andrey V. Dologlonyan ◽  
◽  
Dmitriy S. Strebkov ◽  
Valeriy T. Matveenko ◽  
◽  
...  

The article presents the results obtained during the study of the characteristics of hybrid solar micro-gas turbine units with an integrated parabolocylindrical solar collector. The efficiency of a hybrid solar gas turbine plant depends both on the efficiency of the solar collector and the location of its integration, and on the efficiency of the gas turbine engine. (Research purpose) The research purpose is in studying hybrid solar gas turbine installations based on a parabolocylindrical focusing solar collector in combination with micro-gas turbine engines of various configurations to determine the most suitable match. (Materials and methods) The article considers four basic schemes of gas turbine engines running on organic fuel, their parameters and optimization results. The article presents the main climatic parameters for the study of the focusing solar collector, as well as the parameters of the collector itself and the main dependencies that determine its efficiency and losses. The place of integration of the focusing solar collector into the gas turbine plant was described and justified. (Results and discussion) Hybrid solar micro-gas turbine installations based on micro-gas turbine engines of a simple cycle, a simple cycle with heat recovery, a simple cycle with a turbocharger utilizer, a simple cycle with a turbocharger utilizer and heat recovery for tropical climate conditions were studied on the example of Abu Dhabi. (Conclusions) The most suitable configuration of micro-gas turbine engines for integrating a focusing solar collector is a combination of a simple cycle with a turbocharger utilizer and regeneration. The combination of micro-gas turbine engines of a simple cycle with a turbocharger heat recovery and heat recovery with an integrated focusing solar collector can relatively increase the average annual efficiency of fuel consumption of such installations in a tropical climate by 10-35 percent or more, while maintaining cogeneration capabilities.


1990 ◽  
pp. 320-328
Author(s):  
D.H. Bacon ◽  
R.C. Stephens

Sign in / Sign up

Export Citation Format

Share Document