Theory of cation-phospholipid-induced shape changes in a lipid bilayer couple

1980 ◽  
Vol 42 (5) ◽  
pp. 601-625 ◽  
Author(s):  
Gregory S. B. Lin
1976 ◽  
Vol 70 (1) ◽  
pp. 247-251 ◽  
Author(s):  
M P Sheetz ◽  
S J Singer

We have previously proposed that if the two half-layers of a membrane are different in their protein and lipid compositions, they may respond differently to some membrane perturbation (the bilayer couple hypothesis). This hypothesis has been applied to explain the changes in shape of human erythrocytes that are produced by a variety of amphipathic compounds. These compounds are presumed to intercalate by their hydrophobic ends into the lipid portions of the membrane; if the compounds are anions, the binding is preferentially to the outer half of the bilayer, if cations, to the inner half. It is proposed that such preferential binding causes an expansion of one half-layer relative to the other, with a corresponding change in cell shape. The predicted sidedness of these shape changes is now demonstrated in experiments with methochlorpromazine and 2,4,6-trinitrophenol. Under appropriate nonequilibrium or equilibrium or equilibrium conditions, both of these compounds are shown to be either crenators or cup-formers of the intact erythrocyte, depending upon which side of the membrane they are concentrated in. These results therefore strongly support the bilayer couple hypothesis.


1986 ◽  
Vol 80 (1) ◽  
pp. 281-298
Author(s):  
L. Backman

When the human red cell consumes its ATP, the cell loses its discoid character in favour of a spiculated and eventually a spherical form. This discocyte-echinocyte transformation parallels both degradation of phosphatidylinositol 4,5-bisphosphate and phosphatidic acid but not dephosphorylation of cytoskeletal proteins. Dephosphorylation of both spectrin and band 3 lags behind metabolic crenation. Exogenous vanadate accelerates both shape changes and lipid dephosphorylation in a parallel manner during metabolic depletion. In contrast to its effect on lipids, vanadate reduces the rate of protein dephosphorylation. These observations strongly support a shape control mechanism in the red cell, based on phosphoinositide metabolism and compatible with a bilayer-couple model.


1976 ◽  
Vol 70 (1) ◽  
pp. 193-203 ◽  
Author(s):  
M P Sheetz ◽  
R G Painter ◽  
S J Singer

We have previously proposed the hypothesis that asymmetric membranes behave like bilayer couples: the two layers of the bilayer membrane can respond differently to a particular perturbation. Such a perturbation, for example, can result in the expansion of one layer relative to the other, thereby producing a curvature of that membrane. In experiments with erythrocytes and lymphocytes, we now demonstrate that different membrane perturbations which have opposite effects on membrane curvature can compensate and neutralize one another, as expected from the bilayer couple hypothesis. This provides a rational basis, for example, for understanding the effects of amphipathic drugs on a variety of cellular phenomena which involve shape changes of membranes.


2019 ◽  
Vol 139 (10) ◽  
pp. 1146-1152
Author(s):  
Zugui Peng ◽  
Kenta Shimba ◽  
Yoshitaka Miyamoto ◽  
Tohru Yagi
Keyword(s):  

2019 ◽  
Author(s):  
Dimitrios Kolokouris ◽  
Iris Kalenderoglou ◽  
Panagiotis Lagarias ◽  
Antonios Kolocouris

<p>We studied by molecular dynamic (MD) simulations systems including the inward<sub>closed</sub> state of influenza A M2 protein in complex with aminoadamantane drugs in membrane bilayers. We varied the M2 construct and performed MD simulations in M2TM or M2TM with amphipathic helices (M2AH). We also varied the lipid bilayer by changing either the lipid, DMPC or POPC, POPE or POPC/cholesterol (chol), or the lipids buffer size, 10x10 Å<sup>2 </sup>or 20x20 Å<sup>2</sup>. We aimed to suggest optimal system conditions for the computational description of this ion channel and related systems. Measures performed include quantities that are available experimentally and include: (a) the position of ligand, waters and chlorine anion inside the M2 pore, (b) the passage of waters from the outward Val27 gate of M2 S31N in complex with an aminoadamantane-aryl head blocker, (c) M2 orientation, (d) the AHs conformation and structure which is affected from interactions with lipids and chol and is important for membrane curvature and virus budding. In several cases we tested OPLS2005, which is routinely applied to describe drug-protein binding, and CHARMM36 which describes reliably protein conformation. We found that for the description of the ligands position inside the M2 pore, a 10x10 Å<sup>2</sup> lipids buffer in DMPC is needed when M2TM is used but 20x20 Å<sup>2</sup> lipids buffer of the softer POPC; when M2AH is used all 10x10 Å<sup>2</sup> lipid buffers with any of the tested lipids can be used. For the passage of waters at least M2AH with a 10x10 Å<sup>2</sup> lipid buffer is needed. The folding conformation of AHs which is defined from hydrogen bonding interactions with the bilayer and the complex with chol is described well with a 10x10 Å<sup>2</sup> lipids buffer and CHARMM36. </p>


Sign in / Sign up

Export Citation Format

Share Document