On the boundedness and periodicity of the solutions of a certain vector differential equation of third-order

1999 ◽  
Vol 20 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Cemil Tunç
Author(s):  
Even Mehlum ◽  
Jet Wimp

AbstractWe show that the position vector of any 3-space curve lying on a sphere satisfies a third-order linear (vector) differential equation whose coefficients involve a single arbitrary function A(s). By making various identifications of A(s), we are led to nonlinear identities for a number of higher transcendental functions: Bessel functions, Horn functions, generalized hypergeometric functions, etc. These can be considered natural geometrical generalizations of sin2t + cos2t = 1. We conclude with some applications to the theory of splines.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Cemil Tunç ◽  
Melek Gözen

We give some sufficient conditions to guarantee convergence of solutions to a nonlinear vector differential equation of third order. We prove a new result on the convergence of solutions. An example is given to illustrate the theoretical analysis made in this paper. Our result improves and generalizes some earlier results in the literature.


2021 ◽  
Vol 52 ◽  
Author(s):  
Malika Izid ◽  
Abderrazak El Haimi ◽  
Amina Ouazzani Chahdi

Inthispaper,wegiveanewcharacterizationofak-slanthelixwhichisageneral- ization of general helix and slant helix. Thereafter, we construct a vector differential equation of the third order to determine the parametric representation of a k-slant helix according to standard frame in Euclidean 3-space. Finally, we apply this method to find the position vector of some examples of 2-slant helix by means of intrinsic equations.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Jingli Ren ◽  
Zhibo Cheng ◽  
Yueli Chen

By applying Green's function of third-order differential equation and a fixed point theorem in cones, we obtain some sufficient conditions for existence, nonexistence, multiplicity, and Lyapunov stability of positive periodic solutions for a third-order neutral differential equation.


Sign in / Sign up

Export Citation Format

Share Document