Formulas for the matrix elements of connected diagrams in field theories

1960 ◽  
Vol 17 (2) ◽  
pp. 244-250
Author(s):  
F. R. Halpern
2012 ◽  
Vol 21 (05) ◽  
pp. 1250037
Author(s):  
HERVÉ MOLIQUE ◽  
JERZY DUDEK

In this paper we collect a number of technical issues that arise when constructing the matrix representation of the most general nuclear mean field Hamiltonian within which "all terms allowed by general symmetries are considered not only in principle but also in practice". Such a general posing of the problem is necessary when investigating the predictive power of the mean field theories by means of the well-posed inverse problem. [J. Dudek et al., Int. J. Mod. Phys. E21 (2012) 1250053]. To our knowledge quite often ill-posed mean field inverse problems arise in practical realizations what makes reliable extrapolations into the unknown areas of nuclei impossible. The conceptual and technical issues related to the inverse problem have been discussed in the above-mentioned topic whereas here we focus on "how to calculate the matrix elements, fast and with high numerical precision when solving the inverse problem" [For space-limitation reasons we illustrate the principal techniques on the example of the central interactions].


As an aid to practical calculations, and as a first step in determining whether field theories that can be renormalized lead to convergent perturbation expansions, the number of graphs that can be drawn for each stage of approximation is investigated. Using the idea of a normal product of operators, a simple method is given for finding the number of Feynman-Dyson graphs, with n vertices, that can be drawn when the interaction Hamiltonian density is of a general type. By solving a difference equation approximately, it is shown that the number of graphs remaining after the removal of those containing subgraphs of a specified type is asymptotically equal to the total number of unmodified graphs. Also it is shown that the number of graphs that can be drawn with n vertices increases very rapidly with n , no matter how many external lines are present, and this rapid increase still occurs even when the class of irreducible graphs alone is considered. Thus the perturbation expansions of field theory cannot converge unless the matrix elements decrease with correspondingly great rapidity as n increases.


Author(s):  
Stefan Hollands

AbstractWe introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin–Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered.


Author(s):  
Mariusz Pawlak ◽  
Marcin Stachowiak

AbstractWe present general analytical expressions for the matrix elements of the atom–diatom interaction potential, expanded in terms of Legendre polynomials, in a basis set of products of two spherical harmonics, especially significant to the recently developed adiabatic variational theory for cold molecular collision experiments [J. Chem. Phys. 143, 074114 (2015); J. Phys. Chem. A 121, 2194 (2017)]. We used two approaches in our studies. The first involves the evaluation of the integral containing trigonometric functions with arbitrary powers. The second approach is based on the theorem of addition of spherical harmonics.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


1993 ◽  
Vol 28 (1) ◽  
pp. 49-58
Author(s):  
Launey J. Thomas ◽  
Eyvind H. Wichmann

Author(s):  
David Barber

Finding clusters of well-connected nodes in a graph is a problem common to many domains, including social networks, the Internet and bioinformatics. From a computational viewpoint, finding these clusters or graph communities is a difficult problem. We use a clique matrix decomposition based on a statistical description that encourages clusters to be well connected and few in number. The formal intractability of inferring the clusters is addressed using a variational approximation inspired by mean-field theories in statistical mechanics. Clique matrices also play a natural role in parametrizing positive definite matrices under zero constraints on elements of the matrix. We show that clique matrices can parametrize all positive definite matrices restricted according to a decomposable graph and form a structured factor analysis approximation in the non-decomposable case. Extensions to conjugate Bayesian covariance priors and more general non-Gaussian independence models are briefly discussed.


1977 ◽  
Vol 32 (8) ◽  
pp. 897-898 ◽  
Author(s):  
Y. K. Chan ◽  
B. S. Rao

Abstract The radial Schrödinger wave equation with Morse potential function is solved for HF molecule. The resulting vibration-rotation eigenfunctions are then used to compute the matrix elements of (r - re)n. These are combined with the experimental values of the electric dipole matrix elements to calculate the dipole moment coefficients, M 1 and M 2.


Sign in / Sign up

Export Citation Format

Share Document