Beneficiation of low-grade, high-phosphorus manganese ores of Andhra Pradesh, India, by wet high-intensity magnetic separation plus jigging or hydrocyclone classification

2000 ◽  
Vol 17 (4) ◽  
pp. 269-275
Author(s):  
S. B. Kanungo ◽  
S. K. Mishra ◽  
D. Biswal
2012 ◽  
Vol 47 (8) ◽  
pp. 1129-1138 ◽  
Author(s):  
S. I. Angadi ◽  
Ho-Seok Jeon ◽  
A. Mohanthy ◽  
S. Prakash ◽  
B. Das

2013 ◽  
Vol 303-306 ◽  
pp. 2541-2544 ◽  
Author(s):  
Qing Mei Jia ◽  
Feng Jiu Li ◽  
Ying Li

According to the nature of the ore which containing hematite and magnetite,under the conditions,for example,ore grade is 24.07%,the first fineness of grinding -200 mesh is 50%,the second fineness of grinding -200 mesh is more than 95%, it is concluded that concentrating circuit consisting of first grind-Feebleness magnetic separation -high intensity magnetic separation,second grind-second-high intensity magnetic separation-shaking tables. Ultimately, A concentrate with a productivity of 19.35%,a grade of 65.89% TFe and the recovery of 52.32%was yielded.


2012 ◽  
Vol 602-604 ◽  
pp. 115-119
Author(s):  
Jin Xia Zhang ◽  
Qi Hui Dai ◽  
Li Nan Tian ◽  
Xing Guo Wang

As high-grade refractories raw material,kyanite is widely used and the market demand is increasingly greater. To identify the process mineralogical properties of kyanite from Heibei so as to provide a mineralogical basis for its chemical composition, mineral constituent,ores texture and structure and so on. The results show that: the kyanite Al2O3 21.50%, SiO2 52.87%, using high intensity magnetic separation-gravity separation-flotation folwsheet. Experiments show that, the grinding fineness of -200 mush 65%, with strong intensity magnetic separation, magnetic concentrate by shaking the low intensity magnetic separation,we can get magnetite, garnet, biotite and phlogopite four concentrates, strong magnetic ore tailings consolidated by a rocking bed mud thrown first, refined through flotation, won Kyanite concentrate grading about 56.11% at a recovery of 49.90%.


2020 ◽  
Vol 56 (1) ◽  
pp. 47-58
Author(s):  
A. Messai ◽  
A. Idres ◽  
J.M. Menendez-Aguado

The recent developments of steel and iron industries generated a huge consumption of iron ores which has attracted much attention for utilizing low-grade iron resources to satisfy this increasing demand. The present study focuses on the characterization and enrichment of the low-grade iron ores from Rouina deposit-Ain Defla-. Currently, the ore is used in the cement industry because it is considered a low-grade iron ore. After the sampling process, a physico-chemical and mineralogical characterization was carried out and the results revealed that the sample consists of hematite, limonite and goethite as major opaque oxide minerals whereas silicates as well as clays form the gangue minerals in the sample. The average grade of FeTotal, SiO2 and Al2O3 contents in the raw material collected from the mine of the case study are 30.85%, 23.12% and 7.77% respectively. Processes involving combination of classification, washing and dry high-intensity magnetic separation were carried out to upgrade the low-grade iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to washing followed by drying than dry high intensity magnetic separation and it was observed that limited upgradation is possible. As a result, it was possible to obtain a magnetic concentrate of 54.09% with a recovery degree of 89.30% and yield of 62.82% using a magnetic field intensity equal to 2.4 Tesla at the size fraction [-0.125 +0.063 mm].


2021 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
Alok Tripathy ◽  
Ashok Ku Sahu ◽  
Veerendra Singh ◽  
S.K. Biswal

2013 ◽  
Vol 690-693 ◽  
pp. 3517-3520
Author(s):  
Qing Mei Jia ◽  
Feng Jiu Li ◽  
Ying Li

According to the nature ofthe ore which containing hematite and magnetite,under the conditions,forexample,ore grade is 24.07%,the fitst fineness of grinding -200 mesh is 50%,thesecond fineness of grinding -200 mesh ismore than 93%, it is concluded that concentrating circuit consisting of firstgrind-Feebleness magnetic separation -high intensity magnetic separation,secondgrind-second-high intensity magnetic separation- reverse flotation .Ultimately, A concentrate with aproductivity of 18.90%,a grade of 65.21% TFe and the recovery of 51.29% was yielded.


2014 ◽  
Vol 664 ◽  
pp. 38-42
Author(s):  
Yan Wu ◽  
Bin Shi ◽  
Huan Liang ◽  
Wen Ge ◽  
Chun Jie Yan ◽  
...  

Rapid reduction roasting of low grade manganese carbonate ore by coal and biomass fuels from Hunan, China was investigated. Magnetic separation behaviors and magnetic properties of raw manganese ore and roasted manganese ores were analyzed. After reduction by coal and biomass fuels, the manganese ores demonstrate a new Mn-Fe oxide phase, showing obvious mixed magnetic behaviors of ferromagnet and paramagnet, and the magnetic susceptibilities of roasting ores rapidly increase to almost two orders of magnitude in comparison of the raw ores. The results show that magnetizing roasting technology could enhanced the magnetic properties of the manganese ores about two orders of magnitude higher than raw manganese ore at low roasting temperature. Thereby, we deduce that the weak magnetic separation combined with high magnetic separation could be adequate for roasted manganese ore to satisfy the requirement of electrolytic manganese industry. Application of biomass in manganese ore roasting process is promising to the effective use of biomass and for decreasing the consumption of fossil fuels in the manganese industry.


Sign in / Sign up

Export Citation Format

Share Document