scholarly journals Normal form results for default logic

Author(s):  
V. Wiktor Marek ◽  
Mirosław Truszczyński
Keyword(s):  
Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


Author(s):  
N.I. Gdansky ◽  
◽  
A.A. Denisov ◽  

The article explores the satisfiability of conjunctive normal forms used in modeling systems.The problems of CNF preprocessing are considered.The analysis of particular methods for reducing this formulas, which have polynomial input complexity is given.


Author(s):  
David Julian Gonzalez Maldonado ◽  
Peter Hagedorn ◽  
Thiago Ritto ◽  
Rubens Sampaio ◽  
Artem Karev

Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


Author(s):  
Russell Cheng

This chapter examines the well-known Box-Cox method, which transforms a sample of non-normal observations into approximately normal form. Two non-standard aspects are highlighted. First, the likelihood of the transformed sample has an unbounded maximum, so that the maximum likelihood estimate is not consistent. The usually suggested remedy is to assume grouped data so that the sample becomes multinomial. An alternative method is described that uses a modified likelihood similar to the spacings function. This eliminates the infinite likelihood problem. The second problem is that the power transform used in the Box-Cox method is left-bounded so that the transformed observations cannot be exactly normal. This biases estimates of observational probabilities in an uncertain way. Moreover, the distributions fitted to the observations are not necessarily unimodal. A simple remedy is to assume the transformed observations have a left-bounded distribution, like the exponential; this is discussed in detail, and a numerical example given.


Author(s):  
Kanya Rattanamongkhonkun ◽  
Radom Pongvuthithum ◽  
Chulin Likasiri

Abstract This paper addresses a finite-time regulation problem for time-varying nonlinear systems in p-normal form. This class of time-varying systems includes a well-known lower-triangular system and a chain of power integrator systems as special cases. No growth condition on time-varying uncertainties is imposed. The control law can guarantee that all closed-loop trajectories are bounded and well defined. Furthermore, all states converge to zero in finite time.


2021 ◽  
Vol 281 ◽  
pp. 442-458
Author(s):  
Matheus M. Castro ◽  
Ricardo M. Martins ◽  
Douglas D. Novaes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document