scholarly journals Energy-energy correlation in hadronic Higgs decays: analytic results and phenomenology at NLO

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Jun Gao ◽  
Vladyslav Shtabovenko ◽  
Tong-Zhi Yang

Abstract In this work we complete the investigation of the recently introduced energy-energy correlation (EEC) function in hadronic Higgs decays at next-to-leading order (NLO) in fixed-order perturbation theory in the limit of vanishing light quark masses. The full analytic NLO result for the previously unknown EEC in the H → $$ q\overline{q} $$ q q ¯ + X channel is given in terms of classical polylogarithms and cross-checked against a numerical calculation. In addition to that, we discuss further corrections to predictions of the Higgs EEC event shape variable, including quark mass corrections, effects of parton shower and hadronization. We also estimate the statistical error on the measurements of the Higgs EEC at future Higgs factories and compare with the current perturbative uncertainty.

Author(s):  
Thomas Becher

The lectures that appear within this chapter provide an introduction to soft-collinear effective theory (SCET). It begins by discussing resummation for soft-photon effects in QED, including soft photons in electron–electron scattering and the expansion of loop integrals and the method of regions event-shape variables. It then covers SCET specifically, including the method of regions for the Sudakov form factor, effective Lagrangians, the vector current in SCET, and resummation by renormalization group (RG) evolution. It covers applications of SCET in jet physics, describes the characteristic feature in jet processes of Sudakov logarithms, and discusses factorization for the event-shape variable thrust and factorization and resummation for jet cross sections.


1992 ◽  
Vol 45 (3) ◽  
pp. 892-909 ◽  
Author(s):  
John F. Donoghue ◽  
Daniel Wyler

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Matteo Becchetti ◽  
Roberto Bonciani ◽  
Vittorio Del Duca ◽  
Valentin Hirschi ◽  
Francesco Moriello ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gavin K. C. Cheung ◽  
◽  
Christopher E. Thomas ◽  
David J. Wilson ◽  
Graham Moir ◽  
...  

Abstract Elastic scattering amplitudes for I = 0 DK and I = 0, 1 $$ D\overline{K} $$ D K ¯ are computed in S, P and D partial waves using lattice QCD with light-quark masses corresponding to mπ = 239 MeV and mπ = 391 MeV. The S-waves contain interesting features including a near-threshold JP = 0+ bound state in I = 0 DK, corresponding to the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ (2317), with an effect that is clearly visible above threshold, and suggestions of a 0+ virtual bound state in I = 0 $$ D\overline{K} $$ D K ¯ . The S-wave I = 1 $$ D\overline{K} $$ D K ¯ amplitude is found to be weakly repulsive. The computed finite-volume spectra also contain a deeply-bound D* vector resonance, but negligibly small P -wave DK interactions are observed in the energy region considered; the P and D-wave $$ D\overline{K} $$ D K ¯ amplitudes are also small. There is some evidence of 1+ and 2+ resonances in I = 0 DK at higher energies.


2013 ◽  
Vol 49 (1) ◽  
Author(s):  
A. A. Osipov ◽  
B. Hiller ◽  
A. H. Blin
Keyword(s):  

2000 ◽  
Vol 83-84 ◽  
pp. 173-175
Author(s):  
M. Göckeler ◽  
R. Horsley ◽  
B. Klaus ◽  
W. Kürzinger ◽  
H. Oelrich ◽  
...  
Keyword(s):  

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
S. Alekhin ◽  
A. Kardos ◽  
S. Moch ◽  
Z. Trócsányi

AbstractWe present a detailed comparison of the fixed-order predictions computed by four publicly available computer codes for Drell–Yan processes at the LHC and Tevatron colliders. We point out that while there is agreement among the predictions at the next-to-leading order accuracy, the predictions at the next-to-next-to-leading order (NNLO) differ, whose extent depends on the observable. The sizes of the differences in general are at least similar, sometimes larger than the sizes of the NNLO corrections themselves. We demonstrate that the neglected power corrections by the codes that use global slicing methods for the regularization of double real emissions can be the source of the differences. Depending on the fiducial cuts, those power corrections become linear, hence enhanced as compared to quadratic ones that are considered standard.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 591-599 ◽  
Author(s):  
Rajan Gupta ◽  
Kim Maltman

A summary of the extraction of light quark masses from both QCD sumrules and lattice QCD simulations is presented. The focus is on providing a careful statement of the potential weaknesses in each calculation, and on integrating the work of different collaborations to provide a coherent picture.


Sign in / Sign up

Export Citation Format

Share Document