scholarly journals Analytical computation of critical exponents in several holographic superconductors

2011 ◽  
Vol 2011 (5) ◽  
Author(s):  
Hua-Bi Zeng ◽  
Xin Gao ◽  
Yu Jiang ◽  
Hong-Shi Zong
2018 ◽  
Vol 15 (05) ◽  
pp. 1850086 ◽  
Author(s):  
G. S. Silva ◽  
P. R. S. Carvalho

We present an explicit analytical computation of the quantum corrections, at next-to-leading order, to the critical exponents. We employ for that the Unconventional minimal subtraction, recently proposed, and the Callan–Symanzik methods to probe the universality hypothesis by comparing the outcomes for the critical exponents evaluated in both methods and the ones calculated previously in massless theories renormalized at different renormalization schemes. Furthermore, the consistency of the former method is investigated for the first time in literature, to our knowledge. At the end, we compute the critical exponents at any loop level by an induction process and furnish the physical interpretation of the results.


1987 ◽  
Vol 48 (4) ◽  
pp. 553-558 ◽  
Author(s):  
B. Bonnier ◽  
Y. Leroyer ◽  
C. Meyers

2020 ◽  
Vol 10 (1) ◽  
pp. 400-419 ◽  
Author(s):  
Sihua Liang ◽  
Patrizia Pucci ◽  
Binlin Zhang

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.


Sign in / Sign up

Export Citation Format

Share Document