scholarly journals The Wilson-loop d log representation for Feynman integrals

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Yichao Tang ◽  
Qinglin Yang

Abstract We introduce and study a so-called Wilson-loop d log representation of certain Feynman integrals for scattering amplitudes in $$ \mathcal{N} $$ N = 4 SYM and beyond, which makes their evaluation completely straightforward. Such a representation was motivated by the dual Wilson loop picture, and it can also be derived by partial Feynman parametrization of loop integrals. We first introduce it for the simplest one-loop examples, the chiral pentagon in four dimensions and the three-mass-easy hexagon in six dimensions, which are represented by two- and three-fold d log integrals that are nicely related to each other. For multi-loop examples, we write the L-loop generalized penta-ladders as 2(L − 1)-fold d log integrals of some one-loop integral, so that once the latter is known, the integration can be performed in a systematic way. In particular, we write the eight-point penta-ladder as a 2L-fold d log integral whose symbol can be computed without performing any integration; we also obtain the last entries and the symbol alphabet of these integrals. Similarly we study the symbol of the seven-point double-penta-ladder, which is represented by a 2(L − 1)-fold integral of a hexagon; the latter can be written as a two-fold d log integral plus a boundary term. We comment on the relation of our representation to differential equations and resumming the ladders by solving certain integral equations.

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We propose that the symbol alphabet for classes of planar, dual-conformal-invariant Feynman integrals can be obtained as truncated cluster algebras purely from their kinematics, which correspond to boundaries of (compactifications of) G+(4, n)/T for the n-particle massless kinematics. For one-, two-, three-mass-easy hexagon kinematics with n = 7, 8, 9, we find finite cluster algebras D4, D5 and D6 respectively, in accordance with previous result on alphabets of these integrals. As the main example, we consider hexagon kinematics with two massive corners on opposite sides and find a truncated affine D4 cluster algebra whose polytopal realization is a co-dimension 4 boundary of that of G+(4, 8)/T with 39 facets; the normal vectors for 38 of them correspond to g-vectors and the remaining one gives a limit ray, which yields an alphabet of 38 rational letters and 5 algebraic ones with the unique four-mass-box square root. We construct the space of integrable symbols with this alphabet and physical first-entry conditions, whose dimension can be reduced using conditions from a truncated version of cluster adjacency. Already at weight 4, by imposing last-entry conditions inspired by the n = 8 double-pentagon integral, we are able to uniquely determine an integrable symbol that gives the algebraic part of the most generic double-pentagon integral. Finally, we locate in the space the n = 8 double-pentagon ladder integrals up to four loops using differential equations derived from Wilson-loop d log forms, and we find a remarkable pattern about the appearance of algebraic letters.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Samuel Abreu ◽  
Harald Ita ◽  
Francesco Moriello ◽  
Ben Page ◽  
Wladimir Tschernow ◽  
...  

Abstract We present the computation of a full set of planar five-point two-loop master integrals with one external mass. These integrals are an important ingredient for two-loop scattering amplitudes for two-jet-associated W-boson production at leading color in QCD. We provide a set of pure integrals together with differential equations in canonical form. We obtain analytic differential equations efficiently from numerical samples over finite fields, fitting an ansatz built from symbol letters. The symbol alphabet itself is constructed from cut differential equations and we find that it can be written in a remarkably compact form. We comment on the analytic properties of the integrals and confirm the extended Steinmann relations, which govern the double discontinuities of Feynman integrals, to all orders in ϵ. We solve the differential equations in terms of generalized power series on single-parameter contours in the space of Mandelstam invariants. This form of the solution trivializes the analytic continuation and the integrals can be evaluated in all kinematic regions with arbitrary numerical precision.


2010 ◽  
Vol 2010 ◽  
pp. 1-31
Author(s):  
Luis F. Alday

We focus on the computation of scattering amplitudes of planar maximally supersymmetric Yang-Mill in four dimensions at strong coupling by means of the AdS/CFT correspondence and explain how the problem boils down to the computation of minimal surfaces in AdS in the first part of this paper. In the second part of this review we explain how integrability allows to give a solution to the problem in terms of a set of integral equations. The intention of the review is to give a pedagogical, rather than very detailed, exposition.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $$ {D}_2\simeq {A}_1^2 $$ D 2 ≃ A 1 2 , we show that penta-box ladder has an alphabet of D3 ≃ A3 and provide strong evidence that the alphabet of seven-point double-penta ladders can be identified with a D4 cluster algebra. We relate the symbol letters to the u variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop d log representation, which allows us to predict higher-loop alphabet recursively; by applying it to certain eight-point and nine-point double-penta ladders, we also find D5 and D6 cluster functions respectively.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jean-Nicolas Lang ◽  
Stefano Pozzorini ◽  
Hantian Zhang ◽  
Max F. Zoller

Abstract Scattering amplitudes in D dimensions involve particular terms that originate from the interplay of UV poles with the (D − 4)-dimensional parts of loop numerators. Such contributions can be controlled through a finite set of process-independent rational counterterms, which make it possible to compute loop amplitudes with numerical tools that construct the loop numerators in four dimensions. Building on a recent study [1] of the general properties of two-loop rational counterterms, in this paper we investigate their dependence on the choice of renormalisation scheme. We identify a nontrivial form of scheme dependence, which originates from the interplay of mass and field renormalisation with the (D−4)-dimensional parts of loop numerators, and we show that it can be controlled through a new kind of one-loop counterterms. This guarantees that the two-loop rational counterterms for a given renormalisable theory can be derived once and for all in terms of generic renormalisation constants, which can be adapted a posteriori to any scheme. Using this approach, we present the first calculation of the full set of two-loop rational counterterms in Yang-Mills theories. The results are applicable to SU(N) and U(1) gauge theories coupled to nf fermions with arbitrary masses.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Alejandro Caicedo ◽  
Claudio Cuevas ◽  
Hernán R. Henríquez

We study the existence of S-asymptotically ω-periodic solutions for a class of abstract partial integro-differential equations and for a class of abstract partial integrodifferential equations with delay. Applications to integral equations arising in the study of heat conduction in materials with memory are shown.


Sign in / Sign up

Export Citation Format

Share Document