scholarly journals Extraction of the strong coupling αs(mZ) from a combined NNLO analysis of inclusive electroweak boson cross sections at hadron colliders

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
David d’Enterria ◽  
Andres Poldaru
2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ze Long Liu ◽  
Maximilian Stahlhofen

Abstract We calculate the three-loop soft function for the production of an electroweak boson (Higgs, γ, W±, Z) with large transverse momentum at a hadron collider. It is the first time a soft function for a three-parton process is computed at next-to-next-to-next-to-leading order (N3LO). As a technical novelty, we perform the calculation in terms of forward-scattering-type loop diagrams rather than evaluating phase space integrals. Our three-loop result contains color-tripole contributions and explicitly confirms predictions on the universal infrared structure of QCD scattering amplitudes with three massless parton legs. The soft function is a central ingredient in the factorized cross section for electroweak boson production near the kinematic endpoint (threshold), where the invariant mass of the recoiling hadronic radiation is small compared to its transverse momentum. Our result is required for predictions of the near-threshold cross sections at N3LO and for the resummation of threshold logarithms at primed next-to-next-to-next-to-leading logarithmic (N3LL′) accuracy.


1989 ◽  
Vol 312 (3) ◽  
pp. 616-644 ◽  
Author(s):  
Ronald Kleiss ◽  
Hans Kuijf

2006 ◽  
Vol 21 (02) ◽  
pp. 89-109 ◽  
Author(s):  
S. DAWSON ◽  
C. B. JACKSON ◽  
L. REINA ◽  
D. WACKEROTH

We review the present status of the QCD corrected cross-sections and kinematic distributions for the production of a Higgs boson in association with bottom quarks at the Fermilab Tevatron and CERN Large Hadron Collider. Results are presented for the Minimal Supersymmetric Standard Model where, for large tan β, these production modes can be greatly enhanced compared to the Standard Model case. The next-to-leading order QCD results are much less sensitive to the renormalization and factorization scales than the lowest order results, but have a significant dependence on the choice of the renormalization scheme for the bottom quark Yukawa coupling. We also investigate the uncertainties coming from the Parton Distribution Functions and find that these uncertainties can be comparable to the uncertainties from the remaining scale dependence of the next-to-leading order results. We present results separately for the different final states depending on the number of bottom quarks identified.


2019 ◽  
Vol 206 ◽  
pp. 01002
Author(s):  
Vladimir Chekelian

Measurements of jet cross sections in neutral current deep-inelastic scattering (NC DIS) using data taken with the H1 detector at HERA are accomplished by the precision measurement of double-differential inclusive jet, dijet and trijet cross sections at low photon virtualities 5.5 < Q2 < 80 GeV2, and by extending previous inclusive jet measurements in the range 150 < Q2 < 15000 GeV2 to low transverse jet momenta 5 < PT < 7 GeV. The strong coupling constant at the Z-boson mass, αs(mZ), is determined in next-to-next-to-leading order (NNLO) QCD using H1 inclusive jet and dijet cross section measurements. Complementary, αs(mZ) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with the QCD expectations.


1988 ◽  
Vol 38 (9) ◽  
pp. 2776-2784 ◽  
Author(s):  
P. S. Dimitriadis ◽  
L. B. Papatsimpa ◽  
S. D. P. Vlassopulos

2003 ◽  
Vol 18 (25) ◽  
pp. 1721-1733 ◽  
Author(s):  
V. Ravindran ◽  
J. Smith ◽  
W. L. van Neerven

We review recent theoretical progress in evaluating higher order QCD corrections to Higgs boson differential distributions at hadron–hadron colliders.


2006 ◽  
Vol 21 (26) ◽  
pp. 5221-5239 ◽  
Author(s):  
D. YU. BOGACHEV ◽  
A. V. GLADYSHEV ◽  
D. I. KAZAKOV ◽  
A. S. NECHAEV

Uncertainties of the MSSM predictions are due to an unknown SUSY breaking mechanism. To reduce these uncertainties, one usually imposes constraints on the MSSM parameter space. Recently, two new constraints became available, both from astrophysics: WMAP precise measurement of the amount of the Dark Matter in the Universe and EGRET data on an excess in diffuse gamma ray flux. Being interpreted as a manifestation of supersymmetry these data lead to severe constraints on parameter space and single out a very restricted area. The key feature of this area is the splitting of light gauginos from heavy squarks and sleptons. We study the phenomenological properties of this scenario, in particular, the cross-sections of superparticle production, their decay patterns and signatures for observation at hadron colliders, Tevatron and LHC. We found that weakly interacting particles in this area are very light so that the cross-sections may reach fractions of a pb with jets and/or leptons as final states accompanied by missing energy taken away by light neutralino with a mass around 100 GeV.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044002
Author(s):  
Ondřej Penc

The scattering of electroweak bosons tests the gauge structure of the Standard Model and is sensitive to anomalous quartic gauge couplings. In this paper, we present recent results on vector-boson scattering from the ATLAS experiment using proton–proton collisions with a center-of-mass energy of 13 TeV at the LHC. This includes the observation of [Formula: see text], [Formula: see text], and same-sign [Formula: see text] production via vector-boson scattering along with a measurement of [Formula: see text] production ([Formula: see text] denotes [Formula: see text] or [Formula: see text] boson) in semileptonic final states. The results can be used to constrain new physics that manifests as anomalous electroweak-boson self-interactions. Finally, predicted cross-sections for the electroweak scattering of two same-sign [Formula: see text] bosons in association with two jets are compared for a number of generators.


Sign in / Sign up

Export Citation Format

Share Document