scholarly journals The canonical formulation of E6(6) exceptional field theory

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Lars T. Kreutzer

Abstract We investigate the canonical formulation of the (bosonic) E6(6) exceptional field theory. The explicit non-integral (not manifestly gauge invariant) topological term of E6(6) exceptional field theory is constructed and we consider the canonical formulation of a model theory based on the topological two-form kinetic term. Furthermore we construct the canonical momenta and the canonical Hamiltonian of the full bosonic E6(6) exceptional field theory. Most of the canonical gauge transformations and some parts of the canonical constraint algebra are calculated. Moreover we discuss how to translate the results canonically into the generalised vielbein formulation. We comment on the possible existence of generalised Ashtekar variables.

1996 ◽  
Vol 11 (19) ◽  
pp. 1589-1595 ◽  
Author(s):  
I.L. BUCHBINDER ◽  
V.D. PERSHIN ◽  
G.B. TODER

We propose a method of constructing a gauge invariant canonical formulation for non-gauge classical theory which depends on a set of parameters. Requirement of closure for algebra of operators generating quantum gauge transformations leads to restrictions on parameters of the theory. This approach is then applied for illustration to bosonic string theory coupled to background tachyonic field. It is shown that within the proposed canonical formulation the known mass-shell condition for tachyon is produced.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Qiang Chen ◽  
Jianyuan Xiao ◽  
Peifeng Fan

Abstract A class of high-order canonical symplectic structure-preserving geometric algorithms are developed for high-quality simulations of the quantized Dirac-Maxwell theory based strong-field quantum electrodynamics (SFQED) and relativistic quantum plasmas (RQP) phenomena. With minimal coupling, the Lagrangian density of an interacting bispinor-gauge fields theory is constructed in a conjugate real fields form. The canonical symplectic form and canonical equations of this field theory are obtained by the general Hamilton’s principle on cotangent bundle. Based on discrete exterior calculus, the gauge field components are discreted to form a cochain complex, and the bispinor components are naturally discreted on a staggered dual lattice as combinations of differential forms. With pull-back and push-forward gauge covariant derivatives, the discrete action is gauge invariant. A well-defined discrete canonical Poisson bracket generates a semi-discrete lattice canonical field theory (LCFT), which admits the canonical symplectic form, unitary property, gauge symmetry and discrete Poincaré subgroup, which are good approximations of the original continuous geometric structures. The Hamiltonian splitting method, Cayley transformation and symmetric composition technique are introduced to construct a class of high-order numerical schemes for the semi-discrete LCFT. These schemes involve two degenerate fermion flavors and are locally unconditional stable, which also preserve the geometric structures. Admitting Nielsen-Ninomiya theorem, the continuous chiral symmetry is partially broken on the lattice. As an extension, a pair of discrete chiral operators are introduced to reconstruct the lattice chirality. Equipped with statistically quantization-equivalent ensemble models of the Dirac vacuum and non-trivial plasma backgrounds, the schemes are expected to have excellent performance in secular simulations of relativistic quantum effects, where the numerical errors of conserved quantities are well bounded by very small values without coherent accumulation. The algorithms are verified in detail by numerical energy spectra. Real-time LCFT simulations are successfully implemented for the nonlinear Schwinger mechanism induced e-e+ pairs creation and vacuum Kerr effect, where the nonlinear and non-perturbative features captured by the solutions provide a complete strong-field physical picture in a very wide range, which open a new door toward high-quality simulations in SFQED and RQP fields.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


2001 ◽  
Vol 16 (10) ◽  
pp. 1679-1701 ◽  
Author(s):  
B. SATHIAPALAN

We continue the discussion of our previous paper on writing down gauge-invariant interacting equations for a bosonic string using the loop variable approach. In the earlier paper the equations were written down in one higher dimension where the fields are massless. In this paper we describe a procedure for dimensional reduction that gives interacting equations for fields with the same spectrum as in bosonic string theory. We also argue that the on-shell scattering amplitudes implied by these equations for the physical modes are the same as for the bosonic string. We check this explicitly for some of the simpler equations. The gauge transformation of space–time fields induced by gauge transformations of the loop variables are discussed in some detail. The unintegrated (i.e. before the Koba–Nielsen integration), regularized version of the equations, are gauge invariant off-shell (i.e. off the free mass shell).


1991 ◽  
Vol 06 (21) ◽  
pp. 3823-3841 ◽  
Author(s):  
FUAD M. SARADZHEV

For the chiral Schwinger model, the canonical quantization formulation consistent with the Gauss law constraint is developed. This requires modification of the canonical variables of the model. The formulation presented is unitary and gauge-invariant under modified gauge transformations. The bound state spectrum of the model is established.


1989 ◽  
Vol 04 (21) ◽  
pp. 2063-2071
Author(s):  
GEORGE SIOPSIS

It is shown that the contact term discovered by Wendt is sufficient to ensure finiteness of all tree-level scattering amplitudes in Witten’s field theory of open superstrings. Its inclusion in the action also leads to a gauge-invariant theory. Thus, no additional higher-order counterterms in the action are needed.


1972 ◽  
Vol 6 (12) ◽  
pp. 3476-3491 ◽  
Author(s):  
Michael Danos ◽  
Walter Greiner ◽  
Johann Rafelski

Sign in / Sign up

Export Citation Format

Share Document