scholarly journals Constraints on the charged currents in general neutrino interactions with sterile neutrinos

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Hao-Lin Li ◽  
Zhe Ren ◽  
Ming-Lei Xiao ◽  
Jiang-Hao Yu ◽  
Yu-Hui Zheng

Abstract We obtain the complete and independent bases of effective operators at mass dimension 5, 6, 7, 8, 9 in both standard model effective field theory with light sterile right-handed neutrinos (νSMEFT) and low energy effective field theory with light sterile neutrinos (νLEFT). These theories provide systematical parametrizations on all possible Lorentz-invariant physical effects involving in the Majorana/Dirac neutrinos, with/without the lepton number violations. In the νSMEFT, we find that there are 2 (18), 29 (1614), 80 (4206), 323 (20400), 1358 (243944) independent operators with sterile neutrinos included at the dimension 5, 6, 7, 8, 9 for one (three) generation of fermions, while 24, 5223, 3966, 25425, 789426 independent operators in the νLEFT for two generations of up-type quarks and three generations of all other fermions.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hao-Lin Li ◽  
Zhe Ren ◽  
Ming-Lei Xiao ◽  
Jiang-Hao Yu ◽  
Yu-Hui Zheng

Abstract We obtain the complete operator bases at mass dimensions 5, 6, 7, 8, 9 for the low energy effective field theory (LEFT), which parametrize various physics effects between the QCD scale and the electroweak scale. The independence of the operator basis regarding the equation of motion, integration by parts and flavor relations, is guaranteed by our algorithm [1, 2], whose validity for the LEFT with massive fermions involved is proved by a generalization of the amplitude-operator correspondence. At dimension 8 and 9, we list the 35058 (756) and 704584 (3686) operators for three (one) generations of fermions categorized by their baryon and lepton number violations (∆B, ∆L), as these operators are of most phenomenological relevance.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Jordy de Vries ◽  
Herbert K. Dreiner ◽  
Julian Y. Günther ◽  
Zeren Simon Wang ◽  
Guanghui Zhou

Abstract We study the prospects of a displaced-vertex search of sterile neutrinos at the Large Hadron Collider (LHC) in the framework of the neutrino-extended Standard Model Effective Field Theory (νSMEFT). The production and decay of sterile neutrinos can proceed via the standard active-sterile neutrino mixing in the weak current, as well as through higher-dimensional operators arising from decoupled new physics. If sterile neutrinos are long-lived, their decay can lead to displaced vertices which can be reconstructed. We investigate the search sensitivities for the ATLAS/CMS detector, the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP, and at the proposed fixed-target experiment SHiP. We study scenarios where sterile neutrinos are predominantly produced via rare charm and bottom mesons decays through minimal mixing and/or dimension-six operators in the νSMEFT Lagrangian. We perform simulations to determine the potential reach of high-luminosity LHC experiments in probing the EFT operators, finding that these experiments are very competitive with other searches.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Xabier Marcano ◽  
Joydeep Roy

AbstractIn this work we assess the potential of discovering new physics by searching for lepton-flavour-violating (LFV) decays of the Z boson, $$Z\rightarrow \ell _i \ell _j$$ Z → ℓ i ℓ j , at the proposed circular $$e^+e^-$$ e + e - colliders CEPC and FCC-ee. Both projects plan to run at the Z-pole as a “Tera Z factory”, i.e., collecting $${\mathcal {O}}\left( 10^{12} \right) $$ O 10 12 Z decays. In order to discuss the discovery potential in a model-independent way, we revisit the LFV Z decays in the context of the Standard Model effective field theory and study the indirect constraints from LFV $$\mu $$ μ and $$\tau $$ τ decays on the operators that can induce $$Z\rightarrow \ell _i \ell _j$$ Z → ℓ i ℓ j . We find that, while the $$Z\rightarrow \mu e$$ Z → μ e rates are beyond the expected sensitivities, a Tera Z factory is promising for $$Z\rightarrow \tau \ell $$ Z → τ ℓ decays, probing New Physics at the same level of future low-energy LFV observables.


Author(s):  
Antonio Pich

These lectures provide an introduction to the low-energy dynamics of Nambu–Goldstone fields, which associated with some spontaneous (or dynamical) symmetry breaking, using the powerful methods of effective field theory. The generic symmetry properties of these massless modes are described in detail and two very relevant phenomenological applications are worked out: chiral perturbation theory, the low-energy effective theory of QCD, and the (non-linear) electroweak effective theory. The similarities and differences between these two effective theories are emphasized, and their current status is reviewed. Special attention is given to the short-distance dynamical information encoded in the low-energy couplings of the effective Lagrangians. The successful methods developed in QCD could help us to uncover fingerprints of new physics scales from future measurements of the electroweak effective theory couplings.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Xiao-Gang He ◽  
Xiao-Dong Ma

Abstract In this paper we systematically consider the baryon (B) and lepton (L) number violating dinucleon to dilepton decays (pp → ℓ+ℓ′+, pn → $$ {\mathrm{\ell}}^{+}\overline{\nu}^{\prime } $$ ℓ + ν ¯ ′ , nn → $$ \overline{\nu}\overline{\nu}^{\prime } $$ ν ¯ ν ¯ ′ ) with ∆B = ∆L = −2 in the framework of effective field theory. We start by constructing a basis of dimension-12 (dim-12) operators mediating such processes in the low energy effective field theory (LEFT) below the electroweak scale. Then we consider their standard model effective field theory (SMEFT) completions upwards and their chiral realizations in baryon chiral perturbation theory (BχPT) downwards. We work to the first nontrivial orders in each effective field theory, collect along the way the matching conditions, and express the decay rates in terms of the Wilson coefficients associated with the dim-12 operators in the SMEFT and the low energy constants pertinent to BχPT. We find the current experimental limits push the associated new physics scale larger than 1 − 3 TeV, which is still accessible to the future collider searches. Through weak isospin symmetry, we find the current experimental limits on the partial lifetime of transitions pp → ℓ+ℓ′+, pn → $$ {\mathrm{\ell}}^{+}\overline{\nu}^{\prime } $$ ℓ + ν ¯ ′ imply stronger limits on nn → $$ \overline{\nu}\overline{\nu}^{\prime } $$ ν ¯ ν ¯ ′ than their existing lower bounds, which are improved by 2−3 orders of magnitude. Furthermore, assuming charged mode transitions are also dominantly generated by the similar dim-12 SMEFT interactions, the experimental limits on pp → e+e+, e+μ+, μ+μ+ lead to stronger limits on pn → $$ {\mathrm{\ell}}_{\alpha}^{+}{\overline{\nu}}_{\beta } $$ ℓ α + ν ¯ β with α, β = e, μ than their existing bounds. Conversely, the same assumptions help us to set a lower bound on the lifetime of the experimentally unsearched mode pp → e+τ+ from that of pn → $$ {e}^{+}{\overline{\nu}}_{\tau } $$ e + ν ¯ τ , i.e., $$ {\Gamma}_{pp\to {e}^{+}{\tau}^{+}}^{-1}\gtrsim 2\times {10}^{34} $$ Γ pp → e + τ + − 1 ≳ 2 × 10 34 yr.


Sign in / Sign up

Export Citation Format

Share Document