scholarly journals (g − 2)μ versus flavor changing neutral current induced by the light (B − L)μτ boson

2019 ◽  
Vol 2019 (11) ◽  
Author(s):  
Zhaofeng Kang ◽  
Yoshihiro Shigekami
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jin Sun ◽  
Yu Cheng ◽  
Xiao-Gang He

Abstract General flavor changing Goldstone boson (GB) interactions with fermions from a spontaneous global U(1)G symmetry breaking are discussed. This GB may be the Axion, solving the strong QCD CP problem, if there is a QCD anomaly for the assignments of quarks U(1)G charge. Or it may be the Majoron, producing seesaw Majorana neutrino masses by lepton number violation, if the symmetry breaking scale is much higher than the electroweak scale. It may also, in principle, play the roles of Axion and Majoron simultaneously as far as providing solution for the strong CP problem and generating a small Majorana neutrino masses are concerned. Great attentions have been focused on flavor conserving GB interactions. Recently flavor changing Axion and Majoron models have been studied in the hope to find new physics from rare decays in the intensity frontier. In this work, we will provide a systematic model building aspect study for flavor changing neutral current (FCNC) GB interactions in the fermion sectors, or separately in the quark, charged lepton and neutrino sectors and will identify in detail the sources of FCNC interactions in a class of beyond standard model with a spontaneous global U(1)G symmetry breaking. We also provide a general proof of the equivalence of using physical GB components and GB broken generators for calculating GB couplings to two gluons and two photons, and discuss some issues related to spontaneous CP violation models. Besides, we will also provide some details for obtaining FCNC GB interactions in several popular models, such as the Type-I, -II, -III seesaw and Left-Right symmetric models, and point out some special features in these models.


2004 ◽  
Vol 596 (3-4) ◽  
pp. 173-183 ◽  
Author(s):  
I. Abt ◽  
M. Adams ◽  
H. Albrecht ◽  
A. Aleksandrov ◽  
V. Amaral ◽  
...  

2007 ◽  
Vol 22 (25n28) ◽  
pp. 2121-2129 ◽  
Author(s):  
XIAO-GANG HE ◽  
HO-CHIN TSAI ◽  
TONG LI ◽  
XUE-QIAN LI

We study possible observational effects of scalar dark matter, the darkon D, in Higgs h and top quark t decay processes, h → DD and t → cDD in the minimal Standard Model (SM) and its two Higgs doublet model (THDM) extension supplemented with a SM singlet darkon scalar field D. We find that the darkon D can have a mass in the range of sub-GeV to several tens of GeV, interesting for LHC and ILC colliders, to produce the required dark matter relic density. In the SM with a darkon, t → cDD only occurs at loop level giving a very small rate, while the rate for Higgs decay h → DD can be large. In THDM III with a darkon, where tree level flavor changing neutral current (FCNC) interaction exists, a sizable rate for t → cDD is also possible.


2014 ◽  
Vol 29 (32) ◽  
pp. 1450173 ◽  
Author(s):  
D. Cogollo ◽  
Farinaldo S. Queiroz ◽  
P. Vasconcelos

In this work, we overhaul previous studies of Flavor Changing Neutral Current processes in the context of the Reduced Minimal 3-3-1 (RM331) model. We sift the individual contributions from the CP-even scalars and the Z′ gauge boson using two different parametrizations schemes and compare our results with current measurements. In particular, studying the [Formula: see text] meson system we find the most stringent bounds in the literature on this model, namely [Formula: see text] and [Formula: see text].


2013 ◽  
Vol 28 (31) ◽  
pp. 1350153 ◽  
Author(s):  
DRIS BOUBAA ◽  
ALAKABHA DATTA ◽  
MURUGESWARAN DURAISAMY ◽  
SHAABAN KHALIL

The observation of [Formula: see text] at present experiments would be a clear sign of new physics. In this paper, we calculate this process in an extended Higgs sector framework where the decay is mediated by the exchange of spin zero particle with flavor changing neutral current couplings. If we identify the scalar with the newly discovered state at LHC with a mass ~125 GeV then we find that, after imposing all experimental constraints, the [Formula: see text] can be as high as ~10-6 and [Formula: see text] can be as high as ~10-7. We also calculate this process in the minimal supersymmetric standard model and find the [Formula: see text] is typically of the order ~10-8.


2006 ◽  
Vol 21 (06) ◽  
pp. 457-478 ◽  
Author(s):  
C. BIRD ◽  
R. KOWALEWSKI ◽  
M. POSPELOV

The flavor-changing neutral current transition b → s can serve as a sensitive probe of WIMP dark matter models, if the WIMP mass is under 2 GeV. In this work we extend our earlier analysis to a generic class of models where the interaction between the dark matter sector and the Standard Model matter sector is mediated by the Higgs boson(s). We show that experimental limits on the decays of B-mesons to K(K*) and missing energy provide stringent constraints on the parameter space of such models, but do not rule out sub-GeV WIMPs in a model-independent way. We find that in the context of the NMSSM with light pseudoscalar Higgs, the WIMP masses under a few hundred MeV are generically excluded with the exception of few highly tuned points in the parameter space.


1994 ◽  
Vol 09 (17) ◽  
pp. 1609-1615 ◽  
Author(s):  
D. GÓMEZ DUMM ◽  
F. PISANO ◽  
V. PLEITEZ

We consider flavor changing neutral current effects coming from the Z′ exchange in 3–3–1 models. We show that the mass of this extra neutral vector boson may be less than 2 TeV and discuss the problem of quark family discrimination.


Sign in / Sign up

Export Citation Format

Share Document