scholarly journals BMS flux algebra in celestial holography

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Laura Donnay ◽  
Romain Ruzziconi

Abstract Starting from gravity in asymptotically flat spacetime, the BMS momentum fluxes are constructed. These are non-local expressions of the solution space living on the celestial Riemann surface. They transform in the coadjoint representation of the extended BMS group and correspond to Virasoro primaries under the action of bulk superrotations. The relation between the BMS momentum fluxes and celestial CFT operators is then established: the supermomentum flux is related to the supertranslation operator and the super angular momentum flux is linked to the stress-energy tensor of the celestial CFT. The transformation under the action of asymptotic symmetries and the OPEs of the celestial CFT currents are deduced from the BMS flux algebra.

2011 ◽  
Vol 20 (04) ◽  
pp. 581-591 ◽  
Author(s):  
ZHENXING LIU ◽  
ZEQIAN CHEN

We investigate the properties of rotating asymptotically flat black ring solutions in five-dimensional Einstein–Maxwell-dilaton gravity with the Kaluza–Klein coupling. Within the quasilocal formalism, the balance condition for these solutions is derived by using the conservation of the renormalized boundary stress–energy tensor, which is a new method proposed by Astefanesei and his collaborators. We also study the thermodynamics of unbalanced black rings. The conserved charges and the thermodynamical quantities are computed. Due to the existence of a conical singularity in the boundary, these quantities differ from the original regular ones. It is shown that the Smarr relation and the quantum statistical relation are still satisfied. However, we get an extra term in the first law of thermodynamics. As the balance condition is imposed this extra term vanishes.


2015 ◽  
Vol 30 (35) ◽  
pp. 1550190 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
M. K. Mak ◽  
Sergey V. Sushkov

Eddington-inspired Born–Infeld (EiBI) gravity is a recently proposed modified theory of gravity, based on the classic work of Eddington and Born–Infeld nonlinear electrodynamics. In this paper, we consider the possibility that wormhole geometries are sustained in EiBI gravity. We present the gravitational field equations for an anisotropic stress–energy tensor and consider the generic conditions, for the auxiliary metric, at the wormhole throat. In addition to this, we obtain an exact solution for an asymptotically flat wormhole.


Author(s):  
Paolo Meda ◽  
Nicola Pinamonti ◽  
Daniel Siemssen

AbstractWe prove existence and uniqueness of solutions of the semiclassical Einstein equation in flat cosmological spacetimes driven by a quantum massive scalar field with arbitrary coupling to the scalar curvature. In the semiclassical approximation, the backreaction of matter to curvature is taken into account by equating the Einstein tensor to the expectation values of the stress-energy tensor in a suitable state. We impose initial conditions for the scale factor at finite time, and we show that a regular state for the quantum matter compatible with these initial conditions can be chosen. Contributions with derivative of the coefficient of the metric higher than the second are present in the expectation values of the stress-energy tensor and the term with the highest derivative appears in a non-local form. This fact forbids a direct analysis of the semiclassical equation, and in particular, standard recursive approaches to approximate the solution fail to converge. In this paper, we show that, after partial integration of the semiclassical Einstein equation in cosmology, the non-local highest derivative appears in the expectation values of the stress-energy tensor through the application of a linear unbounded operator which does not depend on the details of the chosen state. We prove that an inversion formula for this operator can be found, furthermore, the inverse happens to be more regular than the direct operator and it has the form of a retarded product, hence, causality is respected. The found inversion formula applied to the traced Einstein equation has thus the form of a fixed point equation. The proof of local existence and uniqueness of the solution of the semiclassical Einstein equation is then obtained applying the Banach fixed point theorem.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hanno Bertle ◽  
Andrea Dei ◽  
Matthias R. Gaberdiel

Abstract The large N limit of symmetric orbifold theories was recently argued to have an AdS/CFT dual world-sheet description in terms of an sl(2, ℝ) WZW model. In previous work the world-sheet state corresponding to the symmetric orbifold stress-energy tensor was identified. We calculate certain 2- and 3-point functions of the corresponding vertex operator on the world-sheet, and demonstrate that these amplitudes reproduce exactly what one expects from the dual symmetric orbifold perspective.


1996 ◽  
Vol 11 (27) ◽  
pp. 2171-2177
Author(s):  
A.N. ALIEV

The electromagnetic perturbations propagating in the multiconical spacetime of N parallel cosmic strings are described. The expression for vacuum average of the stress-energy tensor is reduced to a form involving only zero-spin-weighted perturbation modes.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ming-Zhi Chung ◽  
Yu-tin Huang ◽  
Jung-Wook Kim

Abstract In this paper, we demonstrate that at leading order in post Minkowskian (PM) expansion, the stress-energy tensor of Kerr-Newman black hole can be recovered to all orders in spin from three sets of minimal coupling: the electric and gravitational minimal coupling for higher-spin particles, and the “minimal coupling” for massive spin-2 decay. These couplings are uniquely defined from kinematic consideration alone. This is shown by extracting the classical piece of the one-loop stress-energy tensor form factor, which we provide a basis that is valid to all orders in spin. The 1 PM stress tensor, and the metric in the harmonic gauge, is then recovered from the classical spin limit of the form factor.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


Sign in / Sign up

Export Citation Format

Share Document