scholarly journals A connected sum formula for involutive Heegaard Floer homology

2017 ◽  
Vol 24 (2) ◽  
pp. 1183-1245 ◽  
Author(s):  
Kristen Hendricks ◽  
Ciprian Manolescu ◽  
Ian Zemke
10.4171/qt/25 ◽  
2011 ◽  
pp. 381-449 ◽  
Author(s):  
Robert Lipshitz ◽  
Peter Ozsváth ◽  
Dylan Thurston

Knot Theory ◽  
2018 ◽  
pp. 467-482
Author(s):  
Vassily Manturov

2020 ◽  
Vol 24 (6) ◽  
pp. 2829-2854
Author(s):  
Çağatay Kutluhan ◽  
Yi-Jen Lee ◽  
Clifford Taubes

2017 ◽  
Vol 28 (14) ◽  
pp. 1750106
Author(s):  
Maciej Borodzik

We study rational cuspidal curves in projective surfaces. We specify two criteria obstructing possible configurations of singular points that may occur on such curves. One criterion generalizes the result of Fernandez de Bobadilla, Luengo, Melle–Hernandez and Némethi and is based on the Bézout theorem. The other one is a generalization of the result obtained by Livingston and the author and relies on Ozsváth–Szabó inequalities for [Formula: see text]-invariants in Heegaard Floer homology. We show by means of explicit calculations that the two approaches give very similar obstructions.


2018 ◽  
Vol 9 (2) ◽  
pp. 207-228 ◽  
Author(s):  
Vinicius Gripp Barros Ramos

Sign in / Sign up

Export Citation Format

Share Document