A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0

2005 ◽  
Vol 110 (7) ◽  
pp. 1347-1353 ◽  
Author(s):  
M. J. Cobos ◽  
M. J. Fernández ◽  
J. Rubio ◽  
M. Kharrat ◽  
M. T. Moreno ◽  
...  
Genome ◽  
2007 ◽  
Vol 50 (1) ◽  
pp. 26-34 ◽  
Author(s):  
B. Tar’an ◽  
T.D. Warkentin ◽  
A. Tullu ◽  
A. Vandenberg

Ascochyta blight, caused by the fungus Ascochyta rabiei (Pass.) Lab., is one of the most devastating diseases of chickpea ( Cicer arietinum L.) worldwide. Research was conducted to map genetic factors for resistance to ascochyta blight using a linkage map constructed with 144 simple sequence repeat markers and 1 morphological marker (fc, flower colour). Stem cutting was used to vegetatively propagate 186 F2 plants derived from a cross between Cicer arietinum L. ‘ICCV96029’ and ‘CDC Frontier’. A total of 556 cutting-derived plants were evaluated for their reaction to ascochyta blight under controlled conditions. Disease reaction of the F1 and F2 plants demonstrated that the resistance was dominantly inherited. A Fain’s test based on the means and variances of the ascochyta blight reaction of the F3 families showed that a few genes were segregating in the population. Composite interval mapping identified 3 genomic regions that were associated with the reaction to ascochyta blight. One quantitative trait locus (QTL) on each of LG3, LG4, and LG6 accounted for 13%, 29%, and 12%, respectively, of the total estimated phenotypic variation for the reaction to ascochyta blight. Together, these loci controlled 56% of the total estimated phenotypic variation. The QTL on LG4 and LG6 were in common with the previously reported QTL for ascochyta blight resistance, whereas the QTL on LG3 was unique to the current population.


Sign in / Sign up

Export Citation Format

Share Document