scholarly journals Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: Where are the insulin resistance genes?

Diabetologia ◽  
2008 ◽  
Vol 51 (7) ◽  
pp. 1100-1110 ◽  
Author(s):  
J. C. Florez
2017 ◽  
Vol 68 (7) ◽  
pp. 1622-1627 ◽  
Author(s):  
Diana Simona Stefan ◽  
Andrada Mihai ◽  
Daiana Bajko ◽  
Daniela Lixandru ◽  
Laura Petcu ◽  
...  

Metabolic surgery is the most efficacious method for the treatment of morbid obesity and was recently included among the antidiabetes treatments recommended in obese type 2 diabetes (T2D) patients. The aim of this study was to compare in a randomized controlled trial the effect of sleeve gastrectomy (SG) to that of intensive lifestyle intervention plus pharmacologic treatment on some markers of insulin resistance and beta cell function as well as some appetite controlling hormones in a group of male obese T2D subjects. The study groups comprised 20 subjects for SG and 21 control subjects. Fasting blood glucose, insulin, proinsulin, adiponectin, leptin, ghrelin, HOMA-IR, HOMA-%B, proinsulin-to-insulin ratio and proinsulin-to-adiponectin ratio were evaluated at baseline and after one year follow-up. Overall, patients in the SG group lost 78.98% of excess weight loss (%EWL) in comparison with 9.45% in the control group. This was accompanied by a significant improvement of insulin resistance markers, including increase of adiponectin and decrease of HOMA-IR, while no changes were recorded in the control group. Weight loss was also associated with a significant improvement of proinsulin-to-insulin and proinsulin-to-adiponectin ratio, both surrogate markers of beta cell dysfunction. These also improved in the control group, but were only marginally significant. Our findings suggest that improved insulin resistance and decreased beta cell dysfunction after sleeve gastrectomy might explain diabetes remission associated with metabolic surgery.


Diabetes ◽  
2000 ◽  
Vol 49 (12) ◽  
pp. 2126-2134 ◽  
Author(s):  
F. Mauvais-Jarvis ◽  
A. Virkamaki ◽  
M. D. Michael ◽  
J. N. Winnay ◽  
A. Zisman ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3846
Author(s):  
Jun Inaishi ◽  
Yoshifumi Saisho

Type 2 diabetes (T2DM) is characterized by insulin resistance and beta-cell dysfunction. Although insulin resistance is assumed to be a main pathophysiological feature of the development of T2DM, recent studies have revealed that a deficit of functional beta-cell mass is an essential factor for the pathophysiology of T2DM. Pancreatic fat contents increase with obesity and are suggested to cause beta-cell dysfunction. Since the beta-cell dysfunction induced by obesity or progressive decline with disease duration results in a worsening glycemic control, and treatment failure, preserving beta-cell mass is an important treatment strategy for T2DM. In this mini-review, we summarize the current knowledge on beta-cell mass, beta-cell function, and pancreas fat in obesity and T2DM, and we discuss treatment strategies for T2DM in relation to beta-cell preservation.


2019 ◽  
Vol 19 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Yoshifumi Saisho

Background: Despite a number of innovations in anti-diabetic drugs and substantial improvement in diabetes care, the number of people with diabetes continues to increase, suggesting further need to explore novel approaches to prevent diabetes. Type 2 diabetes (T2DM) is characterized by beta cell dysfunction and insulin resistance. However, insulin resistance, usually a consequence of obesity, is often emphasized and the role of beta cell dysfunction in T2DM is less appreciated. </P><P> Objective and Results: This paper summarizes recent evidence showing the importance of beta cell dysfunction in T2DM and refines the “beta cell workload hypothesis”, emphasizing the importance of beta cell preservation for the prevention and management of T2DM. Conclusion: It is hoped that this novel concept will foster a better understanding of the pathophysiology of T2DM by not only medical staff and patients with diabetes, but also the general population, and encourage more people to adhere to a healthy lifestyle, eventually resulting in “stopping diabetes”.


Author(s):  
Laleh Pezhman ◽  
Abd Tahrani ◽  
Myriam Chimen

Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.


Sign in / Sign up

Export Citation Format

Share Document