Effect of the scanning speed on the microgroove formation regime in nanosecond-pulsed laser scanning ablation of cermet

2020 ◽  
Vol 107 (1-2) ◽  
pp. 97-107
Author(s):  
Liang Liang ◽  
Jiandong Yuan ◽  
Guozhi Lin
Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 668 ◽  
Author(s):  
Linxu Ma ◽  
Lina Wang ◽  
Chengying Li ◽  
Jian Guo ◽  
Pranav Shrotriya ◽  
...  

The super-hydrophobic copper surface was obtained by using a nanosecond pulsed laser. Different micro- and nano-structures were fabricated by changing the laser scanning interval and scanning speed, before heating in an electric heater at 150 °C for two hours to explore the effect of laser parameters and heat treatment on the wettability of the copper surface. It was found that the laser-treated copper surface is super-hydrophilic, and then, after the heat treatment, the surface switches to hydrophobic or even super-hydrophobic. The best super-hydrophobic surface’s apparent contact angle (APCA) was 155.6°, and the water sliding angle (WSA) was 4°. Super-hydrophobic copper is corrosion-resistant, self-cleaning, and dust-proof, and can be widely used in various mechanical devices.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2379
Author(s):  
Gennaro Salvatore Ponticelli ◽  
Flaviana Tagliaferri ◽  
Silvio Genna ◽  
Simone Venettacci ◽  
Oliviero Giannini ◽  
...  

Making decisions and deducing control actions in manufacturing environments requires considering many uncertainties. The ability of fuzzy logic to incorporate imperfect information into a decision model has made it suitable for the optimization of both productivity and final quality. In laser surface texturing for wettability control, in fact, these aspects are governed by a complex interaction of many process parameters, ranging from those connected with the laser source to those concerning the properties of the processed material. The proposed fuzzy-based decision approach overcomes this difficulty by taking into account both the random error, associated with the process variability, and the systematic error, due to the modelling assumptions, and propagating such sources of uncertainties at the input level to the output one. In this work, the laser surface texturing was carried out with a nanosecond-pulsed laser on the surfaces of AISI 304 samples, changing the laser scanning speed, the hatch distance, the number of repetitions, and the scanning pattern. A significant change of the contact angle in the range 24–121° is observed due to the produced textures. The fuzzy maps highlight the inherent uncertainty due to both the laser texturing process and the developed model.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 600
Author(s):  
Olegas Černašėjus ◽  
Jelena Škamat ◽  
Vladislav Markovič ◽  
Nikolaj Višniakov ◽  
Simonas Indrišiūnas

In the present work, the experimental study on laser processing of additively manufactured (AM) maraging steel part surface was conducted. Nanosecond pulsed laser at ablation mode was used for surface modification in oxidizing atmosphere. The morphology, roughness, elemental and phase composition, microhardness and tribological properties of the processed surfaces were investigated. The obtained results revealed that pulsed laser processing under the ablation mode in air allows obtaining modified surface with uniform micro-texture and insignificant residual undulation, providing 3 times lower roughness as compared with the as-manufactured AM part. The intensive oxidation of surface during laser processing results in formation of the significant oxides amount, which can be controlled by scanning speed. Due to the presence of the oxide phase (such as Fe2CoO4 and Ti0.11Co0.89O0.99), the hardness and wear resistance of the surface were significantly improved, up to 40% and 17 times, respectively. The strong correlation between the roughness parameter Ra and mass loss during the tribological test testifies the significant role of the obtained morphology for the wear resistance of the surface.


2008 ◽  
Author(s):  
Takeji Arai ◽  
Noritaka Asano ◽  
Akihiko Minami ◽  
Hideaki Kusano

2021 ◽  
Vol 139 ◽  
pp. 106998
Author(s):  
Zhichao Li ◽  
Donghe Zhang ◽  
Xuan Su ◽  
Shirui Yang ◽  
Jie Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document