Effect of grinding parameters and microstructural features on surface integrity of ADI ground components

Author(s):  
María Emilia Furno ◽  
Amadeo Daniel Sosa
2018 ◽  
Vol 5 (5) ◽  
pp. 171906 ◽  
Author(s):  
Dinesh Kumar Patel ◽  
Deepam Goyal ◽  
B. S. Pabla

Surface integrity has attracted the attention of researchers for improving the functional performance of engineering products. Improvement in surface finish, one of the important parameters in surface integrity, has been attempted by researchers through different processes. Grinding has been widely used for final machining of components requiring smooth surfaces coupled with precise tolerances. Proper selection of grinding wheel material and grade with grinding parameters can result in an improved surface finish and improved surface characteristics. The present work reports the study of the effect of grinding parameters on surface finish of EN8 steel. Experiments were performed on surface grinding and cylindrical grinding for optimization of grinding process parameters for improved surface finish. Grinding wheel speed, depth of cut, table feed, grinding wheel material and table travel speed for surface grinding operation, and work speed for cylindrical grinding operation were taken as the input parameters with four types of grinding wheels (Al 2 O 3 of grades K and L, and white alumina of grades J and K). The surface roughness was taken as an output parameter for experimentation. The grinding wheel material and grade have been observed to be the most significant variables for both cylindrical grinding and surface grinding. Surface roughness in the case of surface grinding is better compared to that of cylindrical grinding, which can be attributed to vibrations produced in the cylindrical grinding attachment. Surface roughness ( R a ) values of 0.757 µm in cylindrical grinding and 0.66 µm in surface grinding have been achieved.


Author(s):  
Radu Pavel ◽  
Xiqun Wang ◽  
Anil K. Srivastava

Nickel-based alloys (Ni-based alloys) are used on a large scale in military, aerospace, missile and defense applications with the aim of improving performance, life, and fuel efficiency. Grinding is extensively used for final finishing of these components. Due to their specific material properties, such as work-hardening and low thermal conductivity, the workpieces made of Ni-based alloys are difficult to grind. The difficulty consists in finding the combination of dressing and grinding parameters that generate the prescribed dimensions, finish, and surface integrity of the finished part with high productivity. Increasing productivity is generally associated with increasing the material removal rate. This, in turn, can create detrimental effects on the ground parts such as micro-cracks, high residual stresses, white layers, and thermal damage. This paper presents a novel methodology for determining an optimal combination of dressing and grinding parameters with respect to maximizing the material removal rate, while taking into account a number of process constraints including: grinding force, power, surface roughness, wheel wear, and surface integrity. According to this methodology, predictive models for grinding behavior are determined using a reduced number of experiments based on an in-process, fast sensor data acquisition system. The models are used as inputs for the multiple criterion optimization program based on a genetic algorithm approach. A CNC surface grinding machine was instrumented to allow process monitoring and data collection. The model building and the optimization methodology have been validated using specimens made of Ni-based alloys. The workpiece materials and the range of the grinding parameters were selected according to applications from aerospace industry. The results support the use of adopted methodology for finding the optimal combination of dressing and grinding parameters.


Author(s):  
Xiu-shan Deng ◽  
Feng-lin Zhang ◽  
Yan-ling Liao ◽  
Fu-hou Bai ◽  
Kai-jiang Li ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


2021 ◽  
Vol 288 ◽  
pp. 125580
Author(s):  
Adam Race ◽  
Iwona Zwierzak ◽  
Jack Secker ◽  
Jonathan Walsh ◽  
Julia Carrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document