Role of sphingosine-1-phosphate (S1P) and the S1P2 receptor in allergen-induced, mast cell-dependent contraction of rat lung parenchymal strips

2009 ◽  
Vol 380 (4) ◽  
pp. 303-309 ◽  
Author(s):  
A. Trifilieff ◽  
F. Baur ◽  
J. R. Fozard
2017 ◽  
Vol 8 ◽  
Author(s):  
Rohit Saluja ◽  
Ashok Kumar ◽  
Manju Jain ◽  
Sudhir K. Goel ◽  
Aklank Jain

1992 ◽  
Vol 43 (4) ◽  
pp. 845-853 ◽  
Author(s):  
Donna M. Wypij ◽  
James S. Nichols ◽  
Paul J. Novak ◽  
D. Lowell Stacy ◽  
Judd Berman ◽  
...  

2020 ◽  
Vol 20 ◽  
Author(s):  
Helen Shiphrah Vethakanraj ◽  
Niveditha Chandrasekaran ◽  
Ashok Kumar Sekar

: Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a “double-edged sword” by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.


2021 ◽  
Vol 22 (14) ◽  
pp. 7360
Author(s):  
Angie De La Cruz ◽  
Aubrey Hargrave ◽  
Sri Magadi ◽  
Justin A. Courson ◽  
Paul T. Landry ◽  
...  

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


2018 ◽  
Vol 19 (1) ◽  
pp. 114 ◽  
Author(s):  
Vidyani Suryadevara ◽  
Panfeng Fu ◽  
David Ebenezer ◽  
Evgeny Berdyshev ◽  
Irina Bronova ◽  
...  

Allergy ◽  
2021 ◽  
Author(s):  
Lea Pohlmeier ◽  
Sanchaita Sriwal Sonar ◽  
Hans‐Reimer Rodewald ◽  
Manfred Kopf ◽  
Luigi Tortola

1994 ◽  
Vol 725 (1) ◽  
pp. 13-21 ◽  
Author(s):  
MARTIN K. CHURCH ◽  
YOSHIMICHI OKAYAMA ◽  
PETER BRADDING

2006 ◽  
Vol 885 (1) ◽  
pp. 268-276 ◽  
Author(s):  
PATRIZIA TEOFOLI ◽  
ALESSANDRA FREZZOLINI ◽  
PIETRO PUDDU ◽  
ORNELLA PITÀ ◽  
ALAIN MAUVIEL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document