scholarly journals The role of CYP2D in rat brain in methamphetamine-induced striatal dopamine and serotonin release and behavioral sensitization

Author(s):  
Marlaina R. Stocco ◽  
Ahmed A. El-Sherbeni ◽  
Bin Zhao ◽  
Maria Novalen ◽  
Rachel F. Tyndale

Abstract Rationale Cytochrome P450 2D (CYP2D) enzymes metabolize many addictive drugs, including methamphetamine. Variable CYP2D metabolism in the brain may alter CNS drug/metabolite concentrations, consequently affecting addiction liability and neuropsychiatric outcomes; components of these can be modeled by behavioral sensitization in rats. Methods To investigate the role of CYP2D in the brain in methamphetamine-induced behavioral sensitization, rats were pretreated centrally with a CYP2D irreversible inhibitor (or vehicle) 20 h prior to each of 7 daily methamphetamine (0.5 mg/kg subcutaneous) injections. In vivo brain microdialysis was used to assess brain drug and metabolite concentrations, and neurotransmitter release. Results CYP2D inhibitor (versus vehicle) pretreatment enhanced methamphetamine-induced stereotypy response sensitization. CYP2D inhibitor pretreatment increased brain methamphetamine concentrations and decreased the brain p-hydroxylation metabolic ratio. With microdialysis conducted on days 1 and 7, CYP2D inhibitor pretreatment exacerbated stereotypy sensitization and enhanced dopamine and serotonin release in the dorsal striatum. Day 1 brain methamphetamine and amphetamine concentrations correlated with dopamine and serotonin release, which in turn correlated with the stereotypy response slope across sessions (i.e., day 1 through day 7), used as a measure of sensitization. Conclusions CYP2D-mediated methamphetamine metabolism in the brain is sufficient to alter behavioral sensitization, brain drug concentrations, and striatal dopamine and serotonin release. Moreover, day 1 methamphetamine-induced neurotransmitter release may be an important predictor of subsequent behavioral sensitization. This suggests the novel contribution of CYP2D in the brain to methamphetamine-induced behavioral sensitization and suggests that the wide variation in human brain CYP2D6 may contribute to differential methamphetamine responses and chronic effects.

2015 ◽  
Vol 8 (1) ◽  
pp. 11-16
Author(s):  
Mária Jozefovičová ◽  
Ivica Just ◽  
Tibor Liptaj ◽  
Svatava Kašparová

Abstract The quantification of in vivo 1H magnetic resonance (MR) spectra measured from the rat brains provides important information about the brain metabolite concentrations and can help to understand the role of the metabolites under normal and pathological conditions. The purpose of this study was to compare the most frequently used algorithms for quantification of 1H spectra: LCModel (Linear Combination of Model spectra) and QUEST (QUantitation based on QUantum ESTimation) from jMRUI software (Java based Magnetic Resonance User Interface). The comparison was done on a rat model of vascular dementia (VD). The MR spectra were measured on 4.7T spectrometer with ultra-short echo time by sequence SPECIAL. For these types of spectra the contribution from the macromolecules and lipids is large. Our analysis revealed that all values determined by QUEST, except for one value, were lower in comparison to values obtained by LCModel. The minimal differences were found in N-acetylaspartate/(phospho) creatine (−0.3 %) and maximal in inositol in both control and VD rats. This underestimation of a metabolite concentration in QUEST may be caused by an overestimation of baseline. Although our study found the different values of metabolite concentrations by these two methods, the quantified metabolite changes in pathological brain were comparable in both analyses.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Jacopo Meldolesi

Biomarkers are molecules that are variable in their origin, nature, and mechanism of action; they are of great relevance in biology and also in medicine because of their specific connection with a single or several diseases. Biomarkers are of two types, which in some cases are operative with each other. Fluid biomarkers, started around 2000, are generated in fluid from specific proteins/peptides and miRNAs accumulated within two extracellular fluids, either the central spinal fluid or blood plasma. The switch of these proteins/peptides and miRNAs, from free to segregated within extracellular vesicles, has induced certain advantages including higher levels within fluids and lower operative expenses. Imaging biomarkers, started around 2004, are identified in vivo upon their binding by radiolabeled molecules subsequently revealed in the brain by positron emission tomography and/or other imaging techniques. A positive point for the latter approach is the quantitation of results, but expenses are much higher. At present, both types of biomarker are being extensively employed to study Alzheimer’s and other neurodegenerative diseases, investigated from the presymptomatic to mature stages. In conclusion, biomarkers have revolutionized scientific and medical research and practice. Diagnosis, which is often inadequate when based on medical criteria only, has been recently improved by the multiplicity and specificity of biomarkers. Analogous results have been obtained for prognosis. In contrast, improvement of therapy has been limited or fully absent, especially for Alzheimer’s in which progress has been inadequate. An urgent need at hand is therefore the progress of a new drug trial design together with patient management in clinical practice.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


Author(s):  
Tomas T. Roos ◽  
Megg G. Garcia ◽  
Isak Martinsson ◽  
Rana Mabrouk ◽  
Bodil Israelsson ◽  
...  

AbstractThe amyloid-beta peptide (Aβ) is thought to have prion-like properties promoting its spread throughout the brain in Alzheimer’s disease (AD). However, the cellular mechanism(s) of this spread remains unclear. Here, we show an important role of intracellular Aβ in its prion-like spread. We demonstrate that an intracellular source of Aβ can induce amyloid plaques in vivo via hippocampal injection. We show that hippocampal injection of mouse AD brain homogenate not only induces plaques, but also damages interneurons and affects intracellular Aβ levels in synaptically connected brain areas, paralleling cellular changes seen in AD. Furthermore, in a primary neuron AD model, exposure of picomolar amounts of brain-derived Aβ leads to an apparent redistribution of Aβ from soma to processes and dystrophic neurites. We also observe that such neuritic dystrophies associate with plaque formation in AD-transgenic mice. Finally, using cellular models, we propose a mechanism for how intracellular accumulation of Aβ disturbs homeostatic control of Aβ levels and can contribute to the up to 10,000-fold increase of Aβ in the AD brain. Our data indicate an essential role for intracellular prion-like Aβ and its synaptic spread in the pathogenesis of AD.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 2947-2957 ◽  
Author(s):  
V Evangelista ◽  
P Piccardoni ◽  
JG White ◽  
G de Gaetano ◽  
C Cerletti

Human PMN stimulated by fMLP are able to activate coincubated, autologous platelets. Cathepsin G, a neutral serine protease stored in the azurophilic granules of PMN, is the major platelet activator in this system. We previously proposed that shear-induced close PMN- platelet contact creates the conditions for which cathepsin G activity on platelets is protected against antiproteinases. The aim of this study was to investigate the adhesive mechanisms, possibly creating between PMN and platelet membranes the microenvironment in which cathepsin G, discharged from stimulated PMN onto adherent platelets, is protected against antiproteinases. Microscopic examination showed that under conditions of high shear, 71.3% +/- 6.1% of PMN were associated to platelets forming small clumps. This percentage decreased to 10% +/- 2% and 13% +/- 4%, respectively, in the presence of an inhibitory antibody to P-selectin or 20 mmol/L mannose-1-phosphate and to 10.8% +/- 3.7% when cells were not stirred. Similarly, PMN pretreatment with neuraminidase abolished PMN binding to platelets. These results indicate that P-selectin mediates PMN-platelet adhesion occurring before PMN stimulation. Prevention of PMN-platelet contact significantly potentiated the inhibitory effect of alpha 1-protease inhibitor on subsequent cathepsin G-induced platelet serotonin release. Because anti-P-selectin antibody, mannose-1-phosphate, and neuraminidase treatment of PMN did not modify PMN-induced platelet activation in the absence of antiproteinases, it is suggested that P- selectin-mediated PMN-platelet adhesion results in the formation of a sequestered microenvironment between cell membranes, in which higher amounts of antiproteinases are required to prevent the activity of released cathepsin G. These data add a new functional role to P- selectin-mediated PMN-platelet adhesion that could be important in vivo because of the presence of antiproteinases in plasma.


1963 ◽  
Vol 41 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M. H. Wiseman-Distler ◽  
T. L. Sourkes

The role of riboflavin in the activity of monoamine oxidase (MAO) was investigated by omitting the vitamin from the diet of rats which were further treated with iproniazid, an irreversible inhibitor of the enzyme. The rate of recovery from the inhibition, presumably reflecting de novo synthesis of the enzyme, was estimated by measuring the excretion of the acidic metabolites formed after intraperitoneal administration of serotonin (5 HT) and dopamine. Consumption of the deficient diet did not impair the action of MAO on these amines. After injection of iproniazid, return to control levels of MAO activity was slower when measured by the oxidation of dopamine than of 5 HT; there was a small but significant effect of riboflavin deficiency upon the conversion of 5 HT to 5-hydroxyindoleacetic acid. This was probably due to enhanced inhibition of MAO observed in deficient rats, an effect that was also obtained when inhibitors other than iproniazid were used in vivo. Similarly, disappearance of 5 HT during incubation with a supernatant prepared from liver of deficient rats was also affected to a greater extent by these inhibitors than when the enzymatic system was prepared from control livers. This finding suggests that riboflavin deficiency renders MAO more susceptible to inhibition.


Development ◽  
2001 ◽  
Vol 128 (23) ◽  
pp. 4881-4890 ◽  
Author(s):  
Carole Mathis ◽  
Natalia Denisenko-Nehrbass ◽  
Jean-Antoine Girault ◽  
Emiliana Borrelli

The membrane of myelinated axons is divided into functionally distinct domains characterized by the enrichment of specific proteins. The mechanisms responsible for this organization have not been fully identified. To further address the role of oligodendrocytes in the functional segmentation of the axolemma in vivo, the distribution of nodal (Na+ channels, ankyrin G), paranodal (paranodin/contactin-associated-protein) and juxtaparanodal (Kv1.1 K+ channels) axonal markers, was studied in the brain of MBP-TK and jimpy mice. In MBP-TK transgenic mice, oligodendrocyte ablation was selectively induced by FIAU treatment before and during the onset of myelination. In jimpy mice, oligodendrocytes degenerate spontaneously within the first postnatal weeks after the onset of myelination. Interestingly, in MBP-TK mice treated for 1-20 days with FIAU, despite the ablation of more than 95% of oligodendrocytes, the protein levels of all tested nodal markers was unaltered. Nevertheless, these proteins failed to cluster in the nodal regions. By contrast, in jimpy mice, despite a diffused localization of paranodin, the formation of nodal clusters of Na+ channels and ankyrin G was observed. Furthermore, K+ channels clusters were transiently visible, but were in direct contact with nodal markers. These results demonstrate that the organization of functional domains in myelinated axons is oligodendrocyte dependent. They also show that the presence of these cells is a requirement for the maintenance of nodal and paranodal regions.


1995 ◽  
Vol 52 (4) ◽  
pp. 831-835 ◽  
Author(s):  
Takahiko Tanaka ◽  
Masami Yoshida ◽  
Hideyasu Yokoo ◽  
Katsuhiro Mizoguchi ◽  
Masatoshi Tanaka

1996 ◽  
Vol 801 (1 Cellular and) ◽  
pp. 353-360 ◽  
Author(s):  
CHIHIRO ITO ◽  
MITSUMOTO SATO ◽  
KENJI ONODERA ◽  
TAKEHIKO WATANABE

1984 ◽  
Vol 221 (3) ◽  
pp. 837-843 ◽  
Author(s):  
M J Carrington ◽  
T A Bird ◽  
C I Levene

Isonicotinic acid hydrazide (isoniazid) causes a large increase in the salt-solubility of collagen when injected into chick embryos; this change is accompanied by the inactivation of lysyl oxidase (EC 1.4.3.13), the enzyme responsible for initiating cross-link formation in collagen and elastin. In addition, isoniazid markedly decreases the liver content of pyridoxal phosphate. The depletion of pyridoxal phosphate takes approx. 6 h, whereas the inhibition of lysyl oxidase and the increase in collagen solubility occur more slowly. A reversal of these effects of isoniazid can be produced by the subsequent injection of a stoichiometric amount of pyridoxal, supporting the role of pyridoxal as a cofactor for lysyl oxidase. Treatment of chick embryos with beta-aminopropionitrile, an irreversible inhibitor of lysyl oxidase, causes an inhibition of the enzyme, which begins to recover within 24 h but which is not affected by the administration of pyridoxal; with isoniazid inhibition, however, lysyl oxidase activity does not show any sign of recovery by 48 h. It is proposed that isoniazid may cause the inhibition of lysyl oxidase by competing for its obligatory cofactor, pyridoxal phosphate. The potential clinical implications in the therapeutic control of fibrosis are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document