scholarly journals Constant mean curvature spheres in homogeneous three-manifolds

Author(s):  
William H. Meeks ◽  
Pablo Mira ◽  
Joaquín Pérez ◽  
Antonio Ros

Abstract We prove that two spheres of the same constant mean curvature in an arbitrary homogeneous three-manifold only differ by an ambient isometry, and we determine the values of the mean curvature for which such spheres exist. This gives a complete classification of immersed constant mean curvature spheres in three-dimensional homogeneous manifolds.

2002 ◽  
Vol 74 (3) ◽  
pp. 371-377 ◽  
Author(s):  
PEDRO A. HINOJOSA

In this work we will deal with disc type surfaces of constant mean curvature in the three dimensional hyperbolic space which are given as graphs of smooth functions over planar domains. From the various types of graphs that could be defined in the hyperbolic space we consider in particular the horizontal and the geodesic graphs. We proved that if the mean curvature is constant, then such graphs are equivalent in the following sense: suppose that M is a constant mean curvature surface in the 3-hyperbolic space such that M is a geodesic graph of a function rho that is zero at the boundary, then there exist a smooth function f that also vanishes at the boundary, such that M is a horizontal graph of f. Moreover, the reciprocal is also true.


2005 ◽  
Vol 48 (3) ◽  
pp. 549-555
Author(s):  
John M. Burns ◽  
Michael J. Clancy

AbstractIsometric deformations of immersed surfaces in Euclidean 3-space are studied by means of the drehriss. When the immersion is of constant mean curvature and the deformation preserves the mean curvature, we determine the drehriss explicitly in terms of the immersion and its Gauss map. These methods are applied to obtain an alternative classification of the Smyth surfaces, i.e. constant mean curvature immersions of the plane into Euclidean 3-space which admit the action of $S^1$ as a non-trivial group of internal isometries.


2015 ◽  
Vol 99 (3) ◽  
pp. 415-427 ◽  
Author(s):  
NURETTIN CENK TURGAY

In this paper we study the Lorentzian surfaces with finite type Gauss map in the four-dimensional Minkowski space. First, we obtain the complete classification of minimal surfaces with pointwise 1-type Gauss map. Then, we get a classification of Lorentzian surfaces with nonzero constant mean curvature and of finite type Gauss map. We also give some explicit examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yu Fu ◽  
Lan Li

The class of biconservative surfaces in Euclidean 3-space𝔼3are defined in (Caddeo et al., 2012) by the equationA(grad H)=-H grad Hfor the mean curvature functionHand the Weingarten operatorA. In this paper, we consider the more general case that surfaces in𝔼3satisfyingA(grad H)=kH grad Hfor some constantkare called generalized bi-conservative surfaces. We show that this class of surfaces are linear Weingarten surfaces. We also give a complete classification of generalized bi-conservative surfaces in𝔼3.


Author(s):  
Luca Guzzardi ◽  
Epifanio G Virga

We propose three integral criteria that must be satisfied by all closed surfaces with constant mean curvature immersed in the three-dimensional Euclidean space. These criteria are integral identities that follow from requiring the second variation of the area functional to be invariant under rigid displacements. We obtain from them a new proof of the old result by Delaunay, to the effect that the sphere is the only closed axis-symmetric surface.


2017 ◽  
Vol 17 (3) ◽  
Author(s):  
Giovanni Calvaruso ◽  
Antonella Perrone

AbstractWe study left-invariant almost paracontact metric structures on arbitrary three-dimensional Lorentzian Lie groups. We obtain a complete classification and description under a natural assumption, which includes relevant classes as normal and almost para-cosymplectic structures, and we investigate geometric properties of these structures.


2021 ◽  
Vol 30 (1) ◽  
pp. 29-40
Author(s):  
KADRI ARSLAN ◽  
ALIM SUTVEREN ◽  
BETUL BULCA

Self-similar flows arise as special solution of the mean curvature flow that preserves the shape of the evolving submanifold. In addition, \lambda -hypersurfaces are the generalization of self-similar hypersurfaces. In the present article we consider \lambda -hypersurfaces in Euclidean spaces which are the generalization of self-shrinkers. We obtained some results related with rotational hypersurfaces in Euclidean 4-space \mathbb{R}^{4} to become self-shrinkers. Furthermore, we classify the general rotational \lambda -hypersurfaces with constant mean curvature. As an application, we give some examples of self-shrinkers and rotational \lambda -hypersurfaces in \mathbb{R}^{4}.


1972 ◽  
Vol 45 ◽  
pp. 139-165 ◽  
Author(s):  
Joseph Erbacher

In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces Mn of non-negative sectional curvature iso-metrically immersed in the Euclidean space Rn+1 or the sphere Sn+1 with constant mean curvature under the additional assumption that the scalar curvature of Mn is constant. This additional assumption is automatically satisfied if Mn is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds Mn of non-negative sectional curvature isometrically immersed in the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature under the additional assumptions that Mn has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is paral lel with respect to the connection in the normal bundle. The assumption that Mn has constant scalar curvature is automatically satisfied if Mn is compact. The assumption on the normal connection is automatically sa tisfied if p = 2 and the mean curvature normal is not zero.


Sign in / Sign up

Export Citation Format

Share Document