Studies of Bone Density, Quantitative Ultrasound, and Vertebral Fractures in Relation to Collagen Type I Alpha 1 Alleles in Elderly Women

2001 ◽  
Vol 68 (6) ◽  
pp. 348-351 ◽  
Author(s):  
R.U. Ashford ◽  
M. Luchetti ◽  
E.V. McCloskey ◽  
R.L. Gray ◽  
K.C. Pande ◽  
...  
1999 ◽  
Vol 84 (3) ◽  
pp. 853-855
Author(s):  
Jesus Sainz ◽  
Jan M. Van Tornout ◽  
James Sayre ◽  
Francine Kaufman ◽  
Vicente Gilsanz

Osteoporosis is a disease characterized by the development of nontraumatic fractures, most commonly in the vertebrae of elderly women. Approximately 500,000 elderly women in the United States are newly diagnosed with vertebral fractures every year, as the compressive strength of the vertebra, mainly determined by the density of cancellous bone and its cross-sectional area, declines with age. A recent study in women suggested that a polymorphism in the Sp1 binding site of the collagen type I gene (COLIA1) was related to decreased vertebral bone mass and vertebral fractures. Determining the phenotypic trait(s) responsible for this relationship and whether this association is manifested in childhood would further define the structural basis for decreased bone mass and help identify children “at risk” for fractures later in life. We therefore studied the COLIA1 gene polymorphism and measurements of the size and the density of vertebral bone in 109 healthy, prepubertal girls. On average, 22 girls with the Ss genotype and one girl with the ss genotype had 6.7% and 49.4% lower cancellous bone density in the vertebrae than girls with the SS genotype. In contrast, there was no association between the size of the vertebrae and the COLIA1 genotypes.


1996 ◽  
Vol 14 (2) ◽  
pp. 203-205 ◽  
Author(s):  
Struan F. A. Grant ◽  
David M. Reid ◽  
Glen Blake ◽  
Ruth Herd ◽  
Ignac Fogelman ◽  
...  

1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


2021 ◽  
Vol 22 (8) ◽  
pp. 4066
Author(s):  
Patrizia Marchese ◽  
Maria Lombardi ◽  
Maria Elena Mantione ◽  
Domenico Baccellieri ◽  
David Ferrara ◽  
...  

Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Maegan A Reeves ◽  
Courtney E Charlton ◽  
Terry D Brandebourg

Abstract Given adipose tissue is histologically classified as connective tissue, we hypothesized expression of extracellular matrix (ECM) components are significantly altered during adipogenesis. However, little is known about the regulation of the ECM during adipose tissue development in the pig. Therefore, the objective of this study was to characterize expression of ECM components during porcine adipogenesis. Primary cultures of adipose tissue stromal-vascular cells were harvested from 3-day-old neonatal pigs (n=6) and preadipocytes induced to differentiate in vitro for 8 days in the presence of insulin, hydrocortisone, and rosiglitazone. Total RNA was extracted from these cultures on days 0 and 8 post-induction. Real-time PCR was then utilized to determine changes in mRNA expression for collagen type I alpha 1 chain (COL1A), collagen type I alpha 2 chain (COL2A), collagen type I alpha 3 chain (COL3A), collagen type I alpha 4 chain (COL4A), collagen type I alpha 6 chain (COL6A), biglycan, fibronectin, laminin, nitogen-1 (NID1), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), metallopeptidase inhibitor 3 (TIMP3). The mRNA abundances of COL1A, COL3A and MMP2 were significantly downregulated 2.86-fold (P < 0.05), 16.7-fold (P < 0.01) and 3.1-fold (P < 0.05) respectively in day 8 (differentiated) compared to day 0 (undifferentiated) cultures. Meanwhile, mRNA abundances were significantly upregulated during adipogenesis for the COL2A (2.82-fold; P < 0.05), COL4A (2.01-fold; P < 0.05), COL6A (2.8-fold; P < 0.05), biglycan (49.9- fold; P < 0.001), fibronectin (452-fold; P < 0.001), laminin (6.1-fold; P < 0.05), NID1(47.4-fold; P < 0.01), MMP9 (76.8- fold; P < 0.01), and TIMP3(3.04-fold; P < 0.05) genes. These data support the hypothesis that significant changes in ECM components occur during porcine adipogenesis. Modulating adipose tissue ECM remodeling might be a novel strategy to manipulate adiposity in the pig.


Sign in / Sign up

Export Citation Format

Share Document