Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus

2015 ◽  
Vol 162 (6) ◽  
pp. 1287-1305 ◽  
Author(s):  
Rachel E. Diner ◽  
Ina Benner ◽  
Uta Passow ◽  
Tomoko Komada ◽  
Edward J. Carpenter ◽  
...  
2014 ◽  
Vol 94 ◽  
pp. 1-6 ◽  
Author(s):  
Aki Kato ◽  
Mana Hikami ◽  
Naoki H. Kumagai ◽  
Atsushi Suzuki ◽  
Yukihiro Nojiri ◽  
...  

2021 ◽  
Vol 118 (3) ◽  
pp. e2004769118
Author(s):  
Elizabeth M. Bullard ◽  
Ivan Torres ◽  
Tianqi Ren ◽  
Olivia A. Graeve ◽  
Kaustuv Roy

Anthropogenic warming and ocean acidification are predicted to negatively affect marine calcifiers. While negative effects of these stressors on physiology and shell calcification have been documented in many species, their effects on shell mineralogical composition remains poorly known, especially over longer time periods. Here, we quantify changes in the shell mineralogy of a foundation species, Mytilus californianus, under 60 y of ocean warming and acidification. Using historical data as a baseline and a resampling of present-day populations, we document a substantial increase in shell calcite and decrease in aragonite. These results indicate that ocean pH and saturation state, not temperature or salinity, play a strong role in mediating the shell mineralogy of this species and reveal long-term changes in this trait under ocean acidification.


2018 ◽  
Vol 14 (7) ◽  
pp. 20180371 ◽  
Author(s):  
Maggie D. Johnson ◽  
Robert C. Carpenter

Ocean acidification (OA) and nutrient enrichment threaten the persistence of near shore ecosystems, yet little is known about their combined effects on marine organisms. Here, we show that a threefold increase in nitrogen concentrations, simulating enrichment due to coastal eutrophication or consumer excretions, offset the direct negative effects of near-future OA on calcification and photophysiology of the reef-building crustose coralline alga, Porolithon onkodes . Projected near-future pCO 2 levels (approx. 850 µatm) decreased calcification by 30% relative to ambient conditions. Conversely, nitrogen enrichment (nitrate + nitrite and ammonium) increased calcification by 90–130% in ambient and high pCO 2 treatments, respectively. pCO 2 and nitrogen enrichment interactively affected instantaneous photophysiology, with highest relative electron transport rates under high pCO 2 and high nitrogen. Nitrogen enrichment alone increased concentrations of the photosynthetic pigments chlorophyll a , phycocyanin and phycoerythrin by approximately 80–450%, regardless of pCO 2 . These results demonstrate that nutrient enrichment can mediate direct organismal responses to OA. In natural systems, however, such direct benefits may be counteracted by simultaneous increases in negative indirect effects, such as heightened competition. Experiments exploring the effects of multiple stressors are increasingly becoming important for improving our ability to understand the ramifications of local and global change stressors in near shore ecosystems.


2015 ◽  
Vol 12 (6) ◽  
pp. 1671-1682 ◽  
Author(s):  
J. Meyer ◽  
U. Riebesell

Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.


2015 ◽  
Vol 282 (1810) ◽  
pp. 20150333 ◽  
Author(s):  
Luke F. Dodd ◽  
Jonathan H. Grabowski ◽  
Michael F. Piehler ◽  
Isaac Westfield ◽  
Justin B. Ries

Anthropogenic elevation of atmospheric CO 2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs ( Panopeus herbstii ) and oysters ( Crassostrea virginica ), oysters were reared with and without caged crabs for 71 days at three p CO 2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour.


2016 ◽  
Vol 73 (3) ◽  
pp. 529-536 ◽  
Author(s):  
Howard I. Browman

Abstract “Ocean acidification” (OA), a change in seawater chemistry driven by increased uptake of atmospheric CO2 by the oceans, has probably been the most-studied single topic in marine science in recent times. The majority of the literature on OA report negative effects of CO2 on organisms and conclude that OA will be detrimental to marine ecosystems. As is true across all of science, studies that report no effect of OA are typically more difficult to publish. Further, the mechanisms underlying the biological and ecological effects of OA have received little attention in most organismal groups, and some of the key mechanisms (e.g. calcification) are still incompletely understood. For these reasons, the ICES Journal of Marine Science solicited contributions to this special issue. In this introduction, I present a brief overview of the history of research on OA, call for a heightened level of organized (academic) scepticism to be applied to the body of work on OA, and briefly present the 44 contributions that appear in this theme issue. OA research has clearly matured, and is continuing to do so. We hope that our readership will find that, when taken together, the articles that appear herein do indeed move us “Towards a broader perspective on ocean acidification research”.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151920 ◽  
Author(s):  
Patricio H. Manríquez ◽  
María Elisa Jara ◽  
Mylene E. Seguel ◽  
Rodrigo Torres ◽  
Emilio Alarcon ◽  
...  

2017 ◽  
Author(s):  
Shanying Tong ◽  
David A. Hutchins ◽  
Kunshan Gao

Abstract. Marine phytoplankton such as bloom-forming, calcite-producing coccolithophores, are naturally exposed to solar UV radiation (UVR, 280–400 nm) in the ocean's upper mixed layers. Nevertheless, effects of increasing CO2-induced ocean acidification and warming have rarely been investigated in the presence of UVR. We examined calcification and photosynthetic carbon fixation performance in the most cosmopolitan coccolithophorid, Emiliania huxleyi, grown under high (1000 μatm, HC; pHT: 7.70) and low (400 μatm, LC; pHT: 8.02) CO2 levels, at 15 °C (LT), 20 °C (MT) and 24 °C (HT) with or without UVR. The HC treatment didn't affect photosynthetic carbon fixation at 15 °C, but significantly enhanced it with increasing temperature. Exposure to UVR inhibited photosynthesis, with higher inhibition by UVA (320–395 nm) than UVB (295–320 nm), except in the HC and 24 °C-grown cells, in which UVB caused more inhibition than UVA. Reduced thickness of the coccolith layer in the HC-grown cells appeared to be responsible for the UV-induced inhibition, and an increased repair rate of UVA-derived damage in the HCHT-grown cells could be responsible for lowered UVA-induced inhibition. While calcification was reduced with the elevated CO2 concentration, exposure to UVB or UVA affected it differentially, with the former inhibiting and the latter enhancing it. UVA-induced stimulation of calcification was higher in the HC-grown cells at 15 and 20 °C, whereas at 24 °C, observed enhancement was not significant. The calcification to photosynthesis ratio (Cal / Pho ratio) was lower in the HC treatment, and increasing temperature also lowered the value. However, at 20 and 24 °C, exposures to UVR significantly increased the Cal / Pho ratio, especially in HC-grown cells, by up to 100 %. This implies that UVR can counteract the negative effects of the greenhouse treatment on the Cal / Pho ratio, and so may be a key stressor when considering the impacts of future greenhouse conditions on E. huxleyi.


Sign in / Sign up

Export Citation Format

Share Document