scholarly journals Coefficient rings of numerical semigroup algebras

2021 ◽  
Author(s):  
I-Chiau Huang ◽  
Raheleh Jafari
2019 ◽  
Vol 48 (3) ◽  
pp. 1079-1088
Author(s):  
I-Chiau Huang ◽  
Mee-Kyoung Kim

2019 ◽  
Vol 223 (5) ◽  
pp. 2258-2272
Author(s):  
I-Chiau Huang ◽  
Raheleh Jafari

2004 ◽  
Vol 104 (2) ◽  
pp. 211-218 ◽  
Author(s):  
M. J. Crabb ◽  
J. Duncan ◽  
C. M. McGregor

10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


2021 ◽  
Author(s):  
Jürgen Herzog ◽  
Takayuki Hibi ◽  
Dumitru I. Stamate

2020 ◽  
Vol 30 (4) ◽  
pp. 257-264
Author(s):  
Ze Gu

AbstractLet b, n be two positive integers such that b ≥ 2, and S(b, n) be the numerical semigroup generated by $\begin{array}{} \{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\} \end{array}$. Applying two order relations, we give formulas for computing the embedding dimension, the Frobenius number, the type and the genus of S(b, n).


1971 ◽  
Vol 18 (3) ◽  
pp. 404-413 ◽  
Author(s):  
William R Nico

Sign in / Sign up

Export Citation Format

Share Document