scholarly journals High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea

Polar Biology ◽  
2015 ◽  
Vol 39 (2) ◽  
pp. 221-236 ◽  
Author(s):  
Glenn Yannic ◽  
Jonathan M. Yearsley ◽  
Roberto Sermier ◽  
Christophe Dufresnes ◽  
Olivier Gilg ◽  
...  

Quantitative seabird and marine mammal at-sea distribution was determined in the Norwegian, Greenland and Wandel seas in August 2018 on board the icebreaking RV Polarstern. A total of 7,380 seabirds belonging to 25 species were tallied during 380 transect counts lasting 30 minute each, i.e. a mean value of 19 per count. Cetaceans were represented by seven species (mean of 0.1 per count) and pinnipeds by four species (0.1 per count). Numbers of seabird species and of individuals were low in the Norwegian Sea and the Greenland Sea (12 and 14 species, 4 and 8 individuals per count). They were especially low in the Wandel Sea off North Greenland: seven seabird species (2 individuals per count), mainly ivory gull Pagophila eburnea and fulmar Fulmarus glacialis. Cetaceans were absent and pinnipeds represented by three species only (0.3 per count). These concentrations are extremely low even when compared to other areas of the high Arctic Ocean.


Polar Record ◽  
2006 ◽  
Vol 42 (2) ◽  
pp. 170-172
Author(s):  
Jeff W. Higdon ◽  
Stefan Romberg

Canadian ivory gull (Pagophila eburnea) populations have declined ca. 80% since the early 1980s, and observations, especially of juveniles, are noteworthy. From 20 to 26 August 2005 adult and juvenile ivory gulls were observed and photographed at Resolute Bay, Nunavut, Canada. The numbers of gulls observed reached a peak on 23 August when 18 birds (13 adults and 5 juveniles) were present. A minimum of 7 juveniles and 13 adults were present on 21 and 23 August, respectively, for a total minimum estimate of 20 ivory gulls. The highest numbers were observed during the stormiest days, suggesting that the gulls were taking shelter in the protected bay. Ivory gulls were observed in close proximity to other seabirds, and one fish capture attempt was observed. These are the first reported juveniles for Resolute Bay since 2000, and the first reported for the Canadian High Arctic since 2002, suggesting that breeding success in 2005 may have been better than in previous years.


2016 ◽  
Vol 12 (11) ◽  
pp. 20160277 ◽  
Author(s):  
Olivier Gilg ◽  
Larysa Istomina ◽  
Georg Heygster ◽  
Hallvard Strøm ◽  
Maria V. Gavrilo ◽  
...  

The ongoing decline of sea ice threatens many Arctic taxa, including the ivory gull. Understanding how ice-edges and ice concentrations influence the distribution of the endangered ivory gulls is a prerequisite to the implementation of adequate conservation strategies. From 2007 to 2013, we used satellite transmitters to monitor the movements of 104 ivory gulls originating from Canada, Greenland, Svalbard-Norway and Russia. Although half of the positions were within 41 km of the ice-edge (75% within 100 km), approximately 80% were on relatively highly concentrated sea ice. Ivory gulls used more concentrated sea ice in summer, when close to their high-Arctic breeding ground, than in winter. The best model to explain the distance of the birds from the ice-edge included the ice concentration within approximately 10 km, the month and the distance to the colony. Given the strong links between ivory gull, ice-edge and ice concentration, its conservation status is unlikely to improve in the current context of sea-ice decline which, in turn, will allow anthropogenic activities to develop in regions that are particularly important for the species.


Author(s):  
Larisa A. Pautova ◽  
Vladimir A. Silkin ◽  
Marina D. Kravchishina ◽  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

The structure of the summer planktonic communities of the Northern part of the Barents sea in the first half of August 2017 were studied. In the sea-ice melting area, the average phytoplankton biomass producing upper 50-meter layer of water reached values levels of eutrophic waters (up to 2.1 g/m3). Phytoplankton was presented by diatoms of the genera Thalassiosira and Eucampia. Maximum biomass recorded at depths of 22–52 m, the absolute maximum biomass community (5,0 g/m3) marked on the horizon of 45 m (station 5558), located at the outlet of the deep trench Franz Victoria near the West coast of the archipelago Franz Josef Land. In ice-free waters, phytoplankton abundance was low, and the weighted average biomass (8.0 mg/m3 – 123.1 mg/m3) corresponded to oligotrophic waters and lower mesotrophic waters. In the upper layers of the water population abundance was dominated by small flagellates and picoplankton from, biomass – Arctic dinoflagellates (Gymnodinium spp.) and cold Atlantic complexes (Gyrodinium lachryma, Alexandrium tamarense, Dinophysis norvegica). The proportion of Atlantic species in phytoplankton reached 75%. The representatives of warm-water Atlantic complex (Emiliania huxleyi, Rhizosolenia hebetata f. semispina, Ceratium horridum) were recorded up to 80º N, as indicators of the penetration of warm Atlantic waters into the Arctic basin. The presence of oceanic Atlantic species as warm-water and cold systems in the high Arctic indicates the strengthening of processes of “atlantificacion” in the region.


2003 ◽  
Vol 29 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Becky Sjare ◽  
Ian Stirling ◽  
Cheryl Spencer

1996 ◽  
Vol 2 (1) ◽  
pp. 247-251 ◽  
Author(s):  
Ingunn M. Tombre ◽  
Kjell E. Erikstad ◽  
Geir W. Gabrielsen ◽  
Karl-Birger Strann ◽  
Jeffrey M. Black

2013 ◽  
Vol 23 (2) ◽  
pp. 103-115 ◽  
Author(s):  
Yifeng YAO ◽  
Qi ZHAO ◽  
Subir BERA ◽  
Xiaoli LI ◽  
Chengsen LI

2000 ◽  
Vol 31 (4-5) ◽  
pp. 317-338 ◽  
Author(s):  
Kathy L. Young ◽  
Ming-ko Woo

High Arctic patchy wetlands are ecological oases in a polar desert environment and are vulnerable to climatic warming. At present, understanding of their responses to external factors (climate and terrain) is limited. This study examines a wetland located in a topographic depression maintained by seasonal snowmelt, ground ice melt and lateral inflows. The wetland is located on Cornwallis Island, Nunavut, Canada. Hydrological, climatological and soil observations were made over several summers with different weather conditions. The summers of 1996 and 1997 were cool and wet but the summer of 1998 was warm and dry. The melt in 1996 was rapid due to rain on snow events and only lasted six days. Deeper snow in 1997 prolonged the melt season to 18 days. A shallow snow-cover in 1998 and early melt depleted the snow by early June. Surface, groundwater and storage fluctuations in the wetland were dictated by snowmelt, rainfall, evaporation loss from the wetland and lateral inputs which in turn were controlled by the melting of the late-lying snow storage in the catchment. Soil factors influence the spatial variations in ground thaw which affects the surface and subsurface flow. Streamflow response of the wetland reflects a nival regime and augmentation of streamflow thoughout the summer season in all three years is supported by multiple water sources: ground ice melt and suprapermafrost water from a large late-lying snowpack. Overall, this study suggests that the survival of some patchy wetlands depends on their interaction with the surrounding basin, with a dependency probably being more important during warm and dry seasons.


Sign in / Sign up

Export Citation Format

Share Document