Variations in the eastern Indian Ocean warm pool and its relation to the dipole in the tropical Indian Ocean

2009 ◽  
Vol 27 (3) ◽  
pp. 640-649 ◽  
Author(s):  
Qilong Zhang ◽  
Yijun Hou ◽  
Qinghua Qi ◽  
Xuezhi Bai
2017 ◽  
Vol 30 (21) ◽  
pp. 8447-8468 ◽  
Author(s):  
Weiqing Han ◽  
Gerald A. Meehl ◽  
Aixue Hu ◽  
Jian Zheng ◽  
Jessica Kenigson ◽  
...  

Previous studies have investigated the centennial and multidecadal trends of the Pacific and Indian Ocean Walker cells (WCs) during the past century, but have obtained no consensus owing to data uncertainties and weak signals of the long-term trends. This paper focuses on decadal variability (periods of one to few decades) by first documenting the variability of the WCs and warm-pool convection, and their covariability since the 1960s, using in situ and satellite observations and reanalysis products. The causes for the variability and covariability are then explored using a Bayesian dynamic linear model, which can extract nonstationary effects of climate modes. The warm-pool convection exhibits apparent decadal variability, generally covarying with the Indian and Pacific Ocean WCs during winter (November–April) with enhanced convection corresponding to intensified WCs, and the Indian–Pacific WCs covary. During summer (May–October), the warm-pool convection still highly covaries with the Pacific WC but does not covary with the Indian Ocean WC, and the Indian–Pacific WCs are uncorrelated. The wintertime coherent variability results from the vital influence of ENSO decadal variation, which reduces warm-pool convection and weakens the WCs during El Niño–like conditions. During summer, while ENSO decadal variability still dominates the Pacific WC, decadal variations of ENSO, the Indian Ocean dipole, Indian summer monsoon convection, and tropical Indian Ocean SST have comparable effects on the Indian Ocean WC overall, with monsoon convection having the largest effect since the 1990s. The complex causes for the Indian Ocean WC during summer result in its poor covariability with the Pacific WC and warm-pool convection.


2013 ◽  
Vol 10 (3) ◽  
pp. 3951-3976 ◽  
Author(s):  
A. M. Waite ◽  
V. Rossi ◽  
M. Roughan ◽  
B. Tilbrook ◽  
J. Akl ◽  
...  

Abstract. We investigate the biogeochemistry of Low Dissolved Oxygen High Nitrate layers forming against the backdrop of several interleaving regional water masses in the Eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LODHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC); the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission) along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification). We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O) of dissolved nitrate, we determine that ∼40–100% of the nitrate found in LODHN layers is likely to originate from nitrogen fixation, and that regionally, the importance of N fixation in contributing to LODHN layers is likely be highest at the surface and offshore.


2014 ◽  
Vol 27 (22) ◽  
pp. 8501-8509 ◽  
Author(s):  
Mathew Koll Roxy ◽  
Kapoor Ritika ◽  
Pascal Terray ◽  
Sébastien Masson

Abstract Recent studies have pointed out an increased warming over the Indian Ocean warm pool (the central-eastern Indian Ocean characterized by sea surface temperatures greater than 28.0°C) during the past half-century, although the reasons behind this monotonous warming are still debated. The results here reveal a larger picture—namely, that the western tropical Indian Ocean has been warming for more than a century, at a rate faster than any other region of the tropical oceans, and turns out to be the largest contributor to the overall trend in the global mean sea surface temperature (SST). During 1901–2012, while the Indian Ocean warm pool went through an increase of 0.7°C, the western Indian Ocean experienced anomalous warming of 1.2°C in summer SSTs. The warming of the generally cool western Indian Ocean against the rest of the tropical warm pool region alters the zonal SST gradients, and has the potential to change the Asian monsoon circulation and rainfall, as well as alter the marine food webs in this biologically productive region. The current study using observations and global coupled ocean–atmosphere model simulations gives compelling evidence that, besides direct contribution from greenhouse warming, the long-term warming trend over the western Indian Ocean during summer is highly dependent on the asymmetry in the El Niño–Southern Oscillation (ENSO) teleconnection, and the positive SST skewness associated with ENSO during recent decades.


Author(s):  
Lili Zeng ◽  
Gengxin Chen ◽  
Ke Huang ◽  
Ju Chen ◽  
Yunkai He ◽  
...  

AbstractAs an important part of the Indo-pacific warm pool, the Indian Ocean has great significance for research on the Asian monsoon system and global climate change. From the 1960s onwards, several international and regional programs have led to important new insights into the Indian Ocean. The eastern Tropical Indian Ocean Observation Network (TIOON) was established in 2010. The TIOON consists of two parts: large-scope observations and moored measurements. Large-scope observations are performed by the eastern tropical Indian Ocean Comprehensive Experiment Cruise (TIO-CEC). Moored measurements are executed by the TIOON mooring array and the hydrological meteorological buoy. By 2019, ten successful TIOON TIO-CEC voyages had been accomplished, making this mission the most comprehensive scientific investigation in China. The ten years of TIO-CEC voyages have collected approximately 1,006 temperature/salinity profiles, 703 GPS radiosonde profiles and numerous other observations in the Indian Ocean. To supplement the existing buoy array in the Indian Ocean, an enhanced TIOON mooring array consisting of eight sub-thermocline acoustic Doppler current profiler (ADCP) moorings, was established since 2013. The TIOON mooring equipped with both upward-looking and downward-looking WHLS75K ADCP provide valuable current monitoring information to depth of 1,000 m in the Indian Ocean. To improve air-sea interaction monitoring, two real-time hydrological meteorological buoys were launched in 2019 and 2020 in the equatorial Indian Ocean. A better understanding of the Indian Ocean requires continuous and long-term observations. The TIOON program and other aspiring field investigation programs will be promoted in the future.


2013 ◽  
Vol 10 (8) ◽  
pp. 5691-5702 ◽  
Author(s):  
A. M. Waite ◽  
V. Rossi ◽  
M. Roughan ◽  
B. Tilbrook ◽  
P. A. Thompson ◽  
...  

Abstract. We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN) layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC); the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission) along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification). We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O) of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.


2013 ◽  
Vol 20 (3) ◽  
pp. 660-671 ◽  
Author(s):  
Xuezhong CHEN ◽  
Shenglong YANG ◽  
Yu Zhang ◽  
Wei FAN ◽  
Yumei WU

Sign in / Sign up

Export Citation Format

Share Document