Enriched single-loop approach for reliability-based design optimization of complex nonlinear problems

Author(s):  
Meide Yang ◽  
Dequan Zhang ◽  
Xu Han
2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Petter N. Lind ◽  
Mårten Olsson

Reliability-based design optimization (RBDO) aims at minimizing a function of probabilistic design variables, given a maximum allowed probability of failure. The most efficient methods available for solving moderately nonlinear problems are single loop single vector (SLSV) algorithms that use a first-order approximation of the probability of failure in order to rewrite the inherently nested structure of the loop into a more efficient single loop algorithm. The research presented in this paper takes off from the fundamental idea of this algorithm. An augmented SLSV algorithm is proposed that increases the rate of convergence by making nonlinear approximations of the constraints. The nonlinear approximations are constructed in the following way: first, the SLSV experiments are performed. The gradient of the performance function is known, as well as an estimate of the most probable failure point (MPP). Then, one extra experiment, a probe point, per performance function is conducted at the first estimate of the MPP. The gradient of each performance function is not updated but the probe point facilitates the use of a natural cubic spline as an approximation of an augmented MPP estimate. The SLSV algorithm using probing (SLSVP) also incorporates a simple and effective move limit (ML) strategy that also minimizes the heuristics needed for initiating the optimization algorithm. The size of the forward finite difference design of experiment (DOE) is scaled proportionally with the change of the ML and so is the relative position of the MPP estimate at the current iteration. Benchmark comparisons against results taken from the literature show that the SLSVP algorithm is more efficient than other established RBDO algorithms and converge in situations where the SLSV algorithm fails.


Author(s):  
Rami Mansour ◽  
Mårten Olsson

In reliability-based design optimization (RBDO), an optimal design which minimizes an objective function while satisfying a number of probabilistic constraints is found. As opposed to deterministic optimization, statistical uncertainties in design variables and design parameters have to be taken into account in the design process in order to achieve a reliable design. In the most widely used RBDO approaches, the First-Order Reliability Method (FORM) is used in the probability assessment. This involves locating the Most Probable Point (MPP) of failure, or the inverse MPP, either exactly or approximately. If exact methods are used, an optimization problem has to be solved, typically resulting in computationally expensive double loop or decoupled loop RBDO methods. On the other hand, locating the MPP approximately typically results in highly efficient single loop RBDO methods since the optimization problem is not necessary in the probability assessment. However, since all these methods are based on FORM, which in turn is based on a linearization of the deterministic constraints at the MPP, they may suffer inaccuracies associated with neglecting the nonlinearity of deterministic constraints. In a previous paper presented by the authors, the Response Surface Single Loop (RSSL) Reliability-based design optimization method was proposed. The RSSL-method takes into account the non-linearity of the deterministic constraints in the computation of the probability of failure and was therefore shown to have higher accuracy than existing RBDO methods. The RSSL-method was also shown to have high efficiency since it bypasses the concept of an MPP. In RSSL, the deterministic solution is first found by neglecting uncertainties in design variables and parameters. Thereafter quadratic response surface models are fitted to the deterministic constraints around the deterministic solution using a single set of design of experiments. The RBDO problem is thereafter solved in a single loop using a closed-form second order reliability method (SORM) which takes into account all elements of the Hessian of the quadratic constraints. In this paper, the RSSL method is used to solve the more challenging system RBDO problems where all constraints are replaced by one constraint on the system probability of failure. The probabilities of failure for the constraints are assumed independent of each other. In general, system reliability problems may be more challenging to solve since replacing all constraints by one constraint may strongly increase the non-linearity in the optimization problem. The extensively studied reliability-based design for vehicle crash-worthiness, where the provided deterministic constraints are general quadratic models describing the system in the whole region of interest, is used to demonstrate the capabilities of the RSSL method for problems with system reliability constraints.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Behrooz Keshtegar ◽  
Peng Hao

For reliability-based design optimization (RBDO) problems, single loop approaches (SLA) are very efficient but prone to converge to inappropriate point for highly nonlinear constraint functions, and double loop approaches (DLA) are proven to be accurate but require more iterations to achieve stable results. In this paper, an adjusted advanced mean value (AAMV) method is firstly proposed to improve the robustness and efficiency of performance measure approach. The global convergence of the AAMV is guaranteed using sufficient descent condition for the reliability loop in RBDO. Then, a hybrid RBDO method is developed to improve the efficiency of DLA and accuracy of SLA, on the basis of sufficient descent condition and AAMV method, named as hybrid single and double loops (HSD) method. Three nonlinear concave and convex performance functions are used to illustrate the efficiency and robustness of the AAMV method; then the accuracy, robustness, and efficiency of the proposed HSD method are compared to current SLA and DLA through another three benchmark nonlinear RBDO examples. Results show that the AAMV is more robust and efficient than the existing reliability analysis methods. The HSD is more accurate than the SLA for highly nonlinear problems, and also exhibits a better performance than the DLA from the point of view of both robustness and efficiency.


Sign in / Sign up

Export Citation Format

Share Document