scholarly journals Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data

2007 ◽  
Vol 30 (7-8) ◽  
pp. 887-907 ◽  
Author(s):  
M. J. Power ◽  
J. Marlon ◽  
N. Ortiz ◽  
P. J. Bartlein ◽  
S. P. Harrison ◽  
...  
2020 ◽  
Author(s):  
David Kesner ◽  
Sandy Harrison ◽  
Tatiana Blyakharchuk ◽  
Mary Edwards ◽  
Michelle Garneau ◽  
...  

<p>Fire is an important environmental and ecological process in northern high latitude environments. It is currently unclear how fire regimes will change in response to current environmental change in this region and the implications this may have for ecosystem processes and human societies. We reconstruct changes in biomass burning since the Last Glacial Maximum in the northern extratropics (>45°N), using data from the Global Charcoal Database complemented by new records from Canada, Beringia and Russia. A clustering machine-learning algorithm (K-means) is used to delimit regions that show similar burning histories. Comparison of the regional trajectories of change in biomass burning provides insights into the environmental drivers of fire. Generalised linear modelling is then used to explore the independent roles of climate, vegetation changes and human activities on changes in fire regimes for each region and for the northern extratropics as a whole. This study provides quantitive information about the differential importance of the drivers of changes in fire regimes in different regions and at different timescales since the Last Glacial Maximum, and provides insights about how these may influence future fire regimes across this region.</p><p> </p>


2021 ◽  
pp. 10-17
Author(s):  
Oguz Turkozan

A cycle of glacial and interglacial periods in the Quaternary caused species’ ranges to expand and contract in response to climatic and environmental changes. During interglacial periods, many species expanded their distribution ranges from refugia into higher elevations and latitudes. In the present work, we projected the responses of the five lineages of Testudo graeca in the Middle East and Transcaucasia as the climate shifted from the Last Glacial Maximum (LGM, Mid – Holocene), to the present. Under the past LGM and Mid-Holocene bioclimatic conditions, models predicted relatively more suitable habitats for some of the lineages. The most significant bioclimatic variables in predicting the present and past potential distribution of clades are the precipitation of the warmest quarter for T. g. armeniaca (95.8 %), precipitation seasonality for T. g. buxtoni (85.0 %), minimum temperature of the coldest month for T. g. ibera (75.4 %), precipitation of the coldest quarter for T. g. terrestris (34.1 %), and the mean temperature of the driest quarter for T. g. zarudyni (88.8 %). Since the LGM, we hypothesise that the ranges of lineages have either expanded (T. g. ibera), contracted (T. g. zarudnyi) or remained stable (T. g. terrestris), and for other two taxa (T. g. armeniaca and T. g. buxtoni) the pattern remains unclear. Our analysis predicts multiple refugia for Testudo during the LGM and supports previous hypotheses about high lineage richness in Anatolia resulting from secondary contact.


2017 ◽  
Author(s):  
Brendon J. Quirk ◽  
◽  
Jeffrey R. Moore ◽  
Benjamin J. Laabs ◽  
Mitchell A. Plummer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document