Optogenetic analysis of respiratory neuronal networks in the ventral medulla of neonatal rats producing channelrhodopsin in Phox2b-positive cells

2019 ◽  
Vol 471 (11-12) ◽  
pp. 1419-1439 ◽  
Author(s):  
Keiko Ikeda ◽  
Hiroyuki Igarashi ◽  
Hiromu Yawo ◽  
Kazuto Kobayashi ◽  
Satoru Arata ◽  
...  
1992 ◽  
Vol 72 (2) ◽  
pp. 439-446 ◽  
Author(s):  
F. G. Issa ◽  
J. E. Remmers

The exact location of the central respiratory chemoreceptors sensitive to changes in PCO2 has not yet been determined. To avoid the confounding effects of the cerebral circulation, we used the in vitro brain stem-spinal cord of neonatal rats (1–5 days old) to identify areas within 500 microns of the ventral surface of the medulla where changes in PCO2 evoked a sudden increase in the rate of respiratory neural activity. The preparation was superfused with mock cerebrospinal fluid (CSF) while maintained at constant temperature (26 +/- 1 degrees C) and pH (7.34). Respiratory frequency increased linearly with decreases in superfusate pH (r2 = 0.92, P less than 0.001), indicating that the respiratory circuitry for the detection of CO2 and stimulation of breathing was intact in this preparation. The search for central chemoreceptors was performed with a specially designed micropipette that allowed microejection of 2–10 nl of mock CSF equilibrated with different CO2-O2 gas mixtures. The pipette was advanced in 50- to 100-microns steps by use of a microdrive to a maximum depth of 500 microns from the surface of the ventral medulla. Depending on the location of the micropipette, ejection of CO2-acidified mock CSF at depths of 100–350 microns below the ventral surface of the medulla stimulated neural respiratory output. Using this response as an indication of the location of central respiratory chemoreceptors, we found that chemoreceptive elements were located in a column in the ventromedial medulla extending from the hypoglossal rootlets caudally to an area 0.75 mm caudal to VI nerve in the rostral medulla.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 ◽  
Author(s):  
Ann L. Revill ◽  
Alexis Katzell ◽  
Christopher A. Del Negro ◽  
William K. Milsom ◽  
Gregory D. Funk

The pre-Bötzinger complex (preBötC) of the ventral medulla generates the mammalian inspiratory breathing rhythm. When isolated in explants and deprived of synaptic inhibition, the preBötC continues to generate inspiratory-related rhythm. Mechanisms underlying burst generation have been investigated for decades, but cellular and synaptic mechanisms responsible for burst termination have received less attention. KCNQ-mediated K+ currents contribute to burst termination in other systems, and their transcripts are expressed in preBötC neurons. Therefore, we tested the hypothesis that KCNQ channels also contribute to burst termination in the preBötC. We recorded KCNQ-like currents in preBötC inspiratory neurons in neonatal rat slices that retain respiratory rhythmicity. Blocking KCNQ channels with XE991 or linopirdine (applied via superfusion or locally) increased inspiratory burst duration by 2- to 3-fold. By contrast, activation of KCNQ with retigabine decreased inspiratory burst duration by ~35%. These data from reduced preparations suggest that the KCNQ current in preBötC neurons contributes to inspiratory burst termination.


Author(s):  
K.A. Carson ◽  
C.B. Nemeroff ◽  
M.S. Rone ◽  
J.S. Kizer ◽  
J.S. Hanker

Biochemical, physiological, pharmacological, and more recently enzyme histo- chemical data have indicated that cholinergic circuits exist in the hypothalamus. Ultrastructural correlates of these pathways such as acetylcholinesterase (AchE) positive neurons in the arcuate nucleus (ARC) and stained terminals in the median eminence (ME) have yet to be described. Initial studies in our laboratories utilizing chemical lesioning and microdissection techniques coupled with microchemical and light microscopic enzyme histo- chemical studies suggested the existence of cholinergic neurons in the ARC which project to the ME (1). Furthermore, in adult male rats with Halasz deafferentations (hypothalamic islands composed primarily of the isolated ARC and the ME) choline acetyltransferase (ChAc) activity, a good marker for cholinergic neurons, was not significantly reduced in the ME and was only somewhat reduced in the ARC (2). Treatment of neonatal rats with high doses of monosodium 1-glutamate (MSG) results in a lesion largely restricted to the neurons of the ARC.


2010 ◽  
Vol 34 (8) ◽  
pp. S28-S28
Author(s):  
Juan Liu ◽  
Lianxiang Zhang ◽  
Yujun Wen ◽  
Yiwei Zhang ◽  
Toshihito Suzuki

2014 ◽  
Vol 1 ◽  
pp. 636-639
Author(s):  
Fernanda S. Matias ◽  
Pedro V. Carelli ◽  
Claudio R. Mirasso ◽  
Mauro Copelli

Sign in / Sign up

Export Citation Format

Share Document