scholarly journals Opposition-based multi-objective whale optimization algorithm with multi-leader guiding

2021 ◽  
Author(s):  
Yang Li ◽  
Wei-gang Li ◽  
Yun-tao Zhao ◽  
Ao Liu
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Author(s):  
Nadim Rana ◽  
Muhammad Shafie Abd Latiff ◽  
Shafi'i Muhammad Abdulhamid

Virtual machine scheduling in the cloud is considered one of the major issue to solve optimal resource allocation problem on the heterogeneous datacenters. With respect to that, the key concern is to map the virtual machines (VMs) with physical machines (PMs) in a way that maximum resource utilization can be achieved with minimum cost. Due to the fact that scheduling is an NP-hard problem, a metaheuristic approach is proven to achieve a better optimal solution to solve this problem. In a rapid changing heterogeneous environment, where millions of resources can be allocated and deallocate in a fraction of the time, modern metaheuristic algorithms perform well due to its immense power to solve the multidimensional problem with fast convergence speed. This paper presents a conceptual framework for solving multi-objective VM scheduling problem using novel metaheuristic Whale optimization algorithm (WOA). Further, we present the problem formulation for the framework to achieve multi-objective functions.


2019 ◽  
Vol 72 (2) ◽  
pp. 243-259 ◽  
Author(s):  
Mohammed M. Ahmed ◽  
Essam H. Houssein ◽  
Aboul Ella Hassanien ◽  
Ayman Taha ◽  
Ehab Hassanien

Sign in / Sign up

Export Citation Format

Share Document