scholarly journals ConTEXT: context-aware adaptive SMS client for drivers to reduce risky driving behaviors

2022 ◽  
Author(s):  
Inayat Khan ◽  
Shah Khusro
2010 ◽  
Vol 69 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Nolwenn Morisset ◽  
Florence Terrade ◽  
Alain Somat

Les recherches dans le domaine de la santé, et notamment en matière de conduite automobile, attestent que le jugement subjectif du risque (comparatif et absolu) et l’auto-efficacité perçue sont impliqués dans les comportements à risque. Cette étude avait pour objectif d’étudier l’influence de l’auto-efficacité perçue sur le jugement subjectif du risque, évalué au moyen d’une mesure indirecte, et de tester le rôle médiateur de ce facteur entre l’auto-efficacité perçue et les comportements auto-déclarés. Les participants, 90 hommes, lisaient deux scénarii décrivant les deux comportements les plus impliqués dans l’accidentologie: la vitesse et l’alcool au volant. Les résultats ne montrent pas de lien significatif entre l’auto-efficacité perçue et le score de jugement comparatif mais une relation significative avec les deux évaluations absolues du risque (autrui et soi). De plus, le jugement absolu du risque pour soi médiatise partiellement la relation entre auto-efficacité perçue et comportements auto-déclarés relatifs aux deux risques routiers étudiés.


Author(s):  
Chaopeng Tan ◽  
Nan Zhou ◽  
Fen Wang ◽  
Keshuang Tang ◽  
Yangbeibei Ji

At high-speed intersections in many Chinese cities, a traffic-light warning sequence at the end of the green phase—three seconds of flashing green followed by three seconds of yellow—is commonly implemented. Such a long phase transition time leads to heterogeneous decision-making by approaching drivers as to whether to pass the signal or stop. Therefore, risky driving behaviors such as red-light running, abrupt stop, and aggressive pass are more likely to occur at these intersections. Proactive identification of risky behaviors can facilitate mitigation of the dilemma zone and development of on-board safety altering strategies. In this study, a real-time vehicle trajectory prediction method is proposed to help identify risky behaviors during the signal phase transition. Two cases are considered and treated differently in the proposed method: a single vehicle case and a following vehicle case. The adaptive Kalman filter (KF) model and the K-nearest neighbor model are integrated to predict vehicle trajectories. The adaptive KF model and intelligent driver model are fused to predict the following vehicles’ trajectories. The proposed models are calibrated and validated using 1,281 vehicle trajectories collected at three high-speed intersections in Shanghai. Results indicate that the root mean square error between the predicted trajectories and the actual trajectories is 5.02 m for single vehicles and 2.33 m for following vehicles. The proposed method is further applied to predict risky behaviors, including red-light running, abrupt stop, aggressive pass, speeding pass, and aggressive following. The overall prediction accuracy is 95.1% for the single vehicle case and 96.2% for the following vehicle case.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Charles Marks ◽  
Arash Jahangiri ◽  
Sahar Ghanipoor Machiani

Every year, over 50 million people are injured and 1.35 million die in traffic accidents. Risky driving behaviors are responsible for over half of all fatal vehicle accidents. Identifying risky driving behaviors within real-world driving (RWD) datasets is a promising avenue to reduce the mortality burden associated with these unsafe behaviors, but numerous technical hurdles must be overcome to do so. Herein, we describe the implementation of a multistage process for classifying unlabeled RWD data as potentially risky or not. In the first stage, data are reformatted and reduced in preparation for classification. In the second stage, subsets of the reformatted data are labeled as potentially risky (or not) using the Iterative-DBSCAN method. In the third stage, the labeled subsets are then used to fit random forest (RF) classification models—RF models were chosen after they were found to be performing better than logistic regression and artificial neural network models. In the final stage, the RF models are used predictively to label the remaining RWD data as potentially risky (or not). The implementation of each stage is described and analyzed for the classification of RWD data from vehicles on public roads in Ann Arbor, Michigan. Overall, we identified 22.7 million observations of potentially risky driving out of 268.2 million observations. This study provides a novel approach for identifying potentially risky driving behaviors within RWD datasets. As such, this study represents an important step in the implementation of protocols designed to address and prevent the harms associated with risky driving.


2018 ◽  
Author(s):  
Chen Wang ◽  
Chengcheng Xu ◽  
Jingxin Xia ◽  
Zhendong Qian

2006 ◽  
Vol 34 ◽  
pp. A131
Author(s):  
Marilyn S Sommers ◽  
Jamison D Fargo ◽  
Michael Lyons ◽  
Steven R Howe ◽  
John C Schafer

Sign in / Sign up

Export Citation Format

Share Document