Hybrid models for suspended sediment prediction: optimized random forest and multi-layer perceptron through genetic algorithm and stochastic gradient descent methods

Author(s):  
Saeed Samadianfard ◽  
Katayoun Kargar ◽  
Sadra Shadkani ◽  
Sajjad Hashemi ◽  
Akram Abbaspour ◽  
...  
2018 ◽  
Vol 5 (5) ◽  
pp. 567 ◽  
Author(s):  
Irvi Oktanisa ◽  
Ahmad Afif Supianto

<p class="Abstrak">Klasifikasi merupakan teknik dalam <em>data mining</em> untuk mengelompokkan data berdasarkan keterikatan data terhadap  data sampel. Pada penelitian ini, kami melakukan perbandingan 9 teknik klasifikasi untuk mengklasifikasi respon pelanggan pada <em>dataset Bank Direct Marketing</em>. Perbandingan teknik klasifikasi ini dilakukan untuk mengetahui model dalam teknik klasfikasi yang paling efektif untuk mengklasifikasi target pada <em>dataset Bank Direct Marketing</em>. Teknik klasifikasi yang digunakan yaitu <em>Support Vector Machine</em>, <em>AdaBoost</em>, <em>Naïve Bayes</em>, <em>Constant, KNN, Tree, Random Forest, Stochastic Gradient Descent</em>, dan <em>CN2 Rule</em>. Proses klasifikasi diawali dengan <em>preprocessing</em> data untuk melakukan penghilangan <em>missing value</em> dan pemilihan fitur pada <em>dataset</em>. Pada tahap evaluasi digunakan teknik <em>10 fold cross validation</em>. Setelah dilakukan pengujian, didapatkan bahwa hasil klasifikasi menunjukkan akurasi terbaik diperoleh oleh model <em>Tree, Constant</em>, <em>Naive Bayes</em>, dan <em>Stochastic Gardient Descent</em>. Kemudian diikuti oleh model <em>Random Forest</em>, <em>K-Nearest Neighbor</em>, <em>CN-2 Rule</em>, <em>AdaBoost</em> dan <em>Support Vector Machine</em>. Dari keempat model yang menunjukkan hasil akurasi terbaik, untuk kasus ini <em>Stochastic Gradient Descent</em> terpilih sebagai model yang memiliki akurasi terbaik dengan nilai akurasi sebesar 0,972 dan hasil visualisasi yang dihasilkan lebih jelas untuk mengklasifikasi target pada <em>dataset Bank Direct Marketing</em>.</p><p class="Abstrak"><em><strong><br /></strong></em></p><p class="Abstrak"><em><strong>Abstract</strong></em></p>Classification is a technique in data mining to classify data based on the attachment of data to the sample data.. In this paper, we present the comparison of  9 classification techniques performed to classify customer response on the dataset of Bank Direct Marketing. The techniques performed to find out the effectiveness model in the classification technique used to classify targets on the dataset of Bank Direct Marketing. The techniques used are Support Vector Machine, AdaBoost, Naïve Bayes, Constant, KNN, Tree, Random Forest, Stochastic Gradient Descent, and CN2 Rule. The classification process begins with preprocessing data to perform missing value omissions and feature selection on the dataset. Cross validation technique, with k value is 10, used in the evaluation stage. After testing, it was found that the classification results showed the best accuracy obtained when using the Tree model, Constant, Naive Bayes and Stochastic Gradient Descent. Afterwards the Random Forest model, K-Nearest Neighbor, CN-2 Rule, AdaBoost, and Support Vector Machine are followed. Of the four models with the high accuracy results, in this case Stochastic Gradient Descent was selected as the best accuracy model with an accuracy value of 0.972 and resulting visualization more clearly to classify targets on the dataset of Bank Direct Marketing.


2020 ◽  
Vol 34 (5) ◽  
pp. 631-636
Author(s):  
Sama Ranjeeth ◽  
Thamarai Pugazhendhi Latchoumi

The capability of predicting malnutrition kids is highly beneficial to take remedial actions on kids who are under 5 year’s age. In this article, Kid’s malnutrition predictive model is created and tested with our own collected dataset. We find the issues of kids malnutrition by the use of Machine Learning (ML) models. From ML-models, a multi-layer perceptron is used to classify the data neatly. Optimizing technique stochastic gradient descent (SGD) and Multilayer Perceptron (MLP) classifier methods are integrated to classify the data more effectively. To select the best features, from the feature selection (FS) technique filter-based method used. After selecting the best features, selected features are pass to the classifier model then the model will classify the data. Results with the MLP-SGD classifier were good than the other classifiers but after feature selection, the performance of the model was increased more. It will help in improving the analysis of malnutrition kid’s data. The sample data are collected from parents who are having kids less than five years of age at Repalle town, Andhra Pradesh, India.


2021 ◽  
Vol 7 (2) ◽  
pp. 112
Author(s):  
Shanto Moyrano Tambunan ◽  
Yessica Nataliani ◽  
Elizabeth Sri Lestari

Perkembangan teknologi tidak luput dari dampak negatif, salah satunya hoaks. Twitter menjadi salah satu media sosial yang paling aktif digunakan sebagai pertukaran informasi, komunikasi, dan hiburan. Oleh karena itu pengguna Twitter dapat menyebarkan berita atau hoaks dengan mudah. Penelitian ini bertujuan mengidentifikasi tweet yang berisi informasi hoaks maupun valid menggunakan pembelajaran mesin. Algoritma yang digunakan adalah Stochastic Gradient Descent, Naïve Bayes, Random Forest, dan Rocchio. Keempat algoritma tersebut dibandingkan untuk kemudian dicari hasil terbaik dalam mengidentifikasi dan memverifikasi tweet di Twitter yang berisi hoaks atau informasi valid secara otomatis. Kata kunci yang digunakan adalah Corona, Mutasi Corona, PSBB, Dana Bansos, Dana Otsus, Utang Pemerintah, dan Sekolah Tatap Muka sebanyak 898 tweet. Data dikelompokkan berdasarkan kelas hoaks dan valid lalu diolah menjadi dataset dengan melewati tahap pra-proses hingga pembobotan kata dengan TF-IDF. Hasil pengujian menunjukkan algoritma Stochastic Gradient Descent merupakan algoritma terbaik dengan hasil akurasi rata-rata sebesar 84.92%. Pengujian lanjutan dilakukan dengan menghitung nilai presisi, recall, dan F-1. Hasil presisi terbaik sebesar 82.95% pada algoritma Naïve Bayes, sedangkan hasil recall dan F-1 terbaik didapat dari algoritma Stochastic Gradient Descent sebesar 85.05% dan 82.42%.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-9
Author(s):  
Veronica Sari ◽  
◽  
Feranandah Firdausi ◽  
Yufis Azhar ◽  
◽  
...  

Classification is one of the techniques that exist in data mining and is useful for grouping a data based on the attachment of the data with the sample data. The dataset that is used in this study is the coffee dataset taken from Dataset Coffee Quality Institute on the GitHub platform. The attributes that contained in the dataset are Aroma, Aftertaste, Flavor, Acidity, Balance, Body, Uniformity, Sweetness, Clean Cup, and Copper points. There are 3 classification methods that are used in this study, Stochastic Gradient Descent, Random Forest and Naive Bayes. The aim of this study is to find out which algorithm is the most effective to predict the coffee quality in the dataset. After that, the prediction results will be tested using K-Fold Cross Validation and Area Under the Curve (AUC) method. The results show that Stochastic Gradient Descent obtained the best accuracy results compared to the other two methods with an accuracy of 98% and increased to 99% after tested using K-fold Cross Validation and AUC method.


Sign in / Sign up

Export Citation Format

Share Document