Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber

Mycorrhiza ◽  
1999 ◽  
Vol 8 (6) ◽  
pp. 329-334 ◽  
Author(s):  
S. Ravnskov ◽  
Iver Jakobsen
2021 ◽  
Vol 1 ◽  
Author(s):  
Bhupinder Singh Jatana ◽  
Christopher Kitchens ◽  
Christopher Ray ◽  
Patrick Gerard ◽  
Nishanth Tharayil

Phosphorus (P) is the second most important mineral nutrient for plant growth and plays a vital role in maintaining global food security. The natural phosphorus reserves [phosphate rock (PR)] are declining at an unprecedented rate, which will threaten the sustainable food supply in near future. Rendered animal byproducts such as meat and bone meal (MBM), could serve as a sustainable alternative to meet crop phosphorus demand. Even though nitrogen (N) from MBM is readily mineralized within a few days, >75% of the P in MBM is present as calcium phosphate that is sparingly available to plants. Thus, application of MBM with the aim of meeting crop N demand could result in buildup of P reserves in soil, which necessitates the need to improve the P mobilization from MBM to achieve higher plant P use efficiency. Here, we tested the potential of two microbial inoculum-arbuscular mycorrhizal fungi (AMF) and P solubilizing fungi (Penicillium bilaiae), in improving the mobilization of P from MBM and the subsequent P uptake by maize (Zea mays). Compared to the non-inoculated MBM control, the application of P. bilaiae increased the P mobilization from MBM by more than two-fold and decreased the content of calcium bound P in the soil by 26%. However, despite this mobilization, P. bilaiae did not increase the tissue content of P in maize. On the other hand, AMF inoculation with MBM increased the plant root, shoot biomass, and plant P uptake as compared to non-inoculated control, but did not decrease the calcium bound P fraction of the soil, indicating there was limited P mobilization. The simultaneous application of both AMF and P. bilaiae in association with MBM resulted in the highest tissue P uptake of maize with a concomitant decrease in the calcium bound P in the soil, indicating the complementary functional traits of AMF and P. bilaiae in plant P nutrition from MBM. Arbuscular mycorrhizal fungi inoculation with MBM also increased the plant photosynthesis rate (27%) and root phosphomonoesterase activity (40%), which signifies the AMF associated regulation of plant physiology. Collectively, our results demonstrate that P mobilization and uptake efficiency from MBM could be improved with the combined use of arbuscular mycorrhizal fungi and P. bilaiae.


2013 ◽  
Vol 281 ◽  
pp. 664-669
Author(s):  
En Wu ◽  
Guo Rong Xin ◽  
Kazuo Sugawara

With the aggravation of volcanic ash Andosol acidification, artificial forage grass Dactylis glomerata L. gradual degradation, replaced by weed plant Anthoxanthum odoratum L., but the mechanism is unclear. In order to reveal the mechanism, this study used Andosol soil as matrix, explored the effects of arbuscular mycorrhizal fungi on D. glomerata and A. odoratum at different pH gradients in acidic Andosol by glasshouse experiment. The results show that the mycorrhizal colonization of D. glomerata strongly affected by soil pH, but the A. odoratum was not yet. The mycorrhizal symbiosis led to a positive effect on growth and P uptake of D. glomerata and A. odoratum. Consider to invasion and expansion of A. odoratum in severity acidic pasture is origin of this specificity on arbuscular mycorrhizal symbiosis in acidic soil other than D. glomerata.


Author(s):  
J. Diane Knight

Abstract Two fungal inoculants are commercially available in Canada and the USA that target improving plant access to soil phosphorus (P). Arbuscular mycorrhizal fungi and Penicillium bilaiae were used to inoculate wheat, lentil and flax grown in an organically-managed and a conventionally-managed soil. A second crop was grown after freezing the soil to evaluate if the inoculants carried over to a second crop. Crops in the organically managed soil were smaller and took up less P than the same crop in the conventionally managed soil. Inoculation with either inoculant improved shoot growth and P uptake in wheat grown in the organically-managed soil and in lentil grown in the conventionally-managed soil. Co-application of the inoculants was never superior to the single inoculants. Carry-over effects were slight and inconsistent.


Mycorrhiza ◽  
2019 ◽  
Vol 29 (6) ◽  
pp. 615-622 ◽  
Author(s):  
Raúl Omar Real-Santillán ◽  
Ek del-Val ◽  
Rocío Cruz-Ortega ◽  
Hexon Ángel Contreras-Cornejo ◽  
Carlos Ernesto González-Esquivel ◽  
...  

Author(s):  
Q. Liu ◽  
A.J. Parsons ◽  
H. Xue ◽  
J.A. Newman ◽  
S. Rassmussen

Both foliar endophytes and root arbuscular mycorrhizal fungi can infect perennial ryegrass and improve its performance, mainly by improving herbivore resistance and phosphorus (P) uptake, respectively.


2016 ◽  
Vol 44 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Xue YANG ◽  
Hongqing YU ◽  
Tao Zhang ◽  
Jixun GUO ◽  
Xiang ZHANG

Arbuscular mycorrhizal fungi (AMF) play a key role in plant growth and survival; however, the influence of AMF on the growth and production of Suaedoideae species is still not well understood. The object of this study was to understand the mechanism of AMF that affects the growth of Suaedoideae species under different saline conditions. The result showed that the Suaedoideae species Suaeda physophora was colonized by the AMF species Glomus etunicatum (Ge) and Glomus mosseae (Gm). AMF significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD) in S. physophora and reduced the concentrations of malondialdehyde (MDA) and H2O2 in the leaves of S. physophora under salt stress. AMF also improved the aboveground biomass of S. physophora and significantly increased its seed numbers. Moreover, AMF increased the aboveground phosphorus (P) content of S. physophora. No significant difference between the effect of AMF species Ge and Gm on S. physophora growth was observed. These results suggest that AMF can increase the salt resistance of the Suaedoideae species S. physophora by increasing SOD and POD activities, reducing MDA and H2O2 concentrations and increasing P uptake. The results highlight that AMF might play an important role in S. physophora growth and population survival under harsh salt conditions.


Sign in / Sign up

Export Citation Format

Share Document