Fluorometric determination of glucose based on a redox reaction between glucose and aminopropyltriethoxysilane and in-situ formation of blue-green emitting silicon nanodots

2019 ◽  
Vol 186 (2) ◽  
Author(s):  
Qiyong Cai ◽  
Hongmin Meng ◽  
Yeru Liu ◽  
Zhaohui Li
2021 ◽  
Vol 11 (16) ◽  
pp. 7652
Author(s):  
Meng Gao ◽  
Chengrong Cao ◽  
John H. Perepezko

The advent of chip calorimetry has enabled an unprecedented extension of the capability of differential scanning calorimetry to explore new domains of materials behavior. In this paper, we highlight some of our recent work: the application of heating and cooling rates above 104 K/s allows for the clear determination of the glass transition temperature, Tg, in systems where Tg and the onset temperature for crystallization, Tx, overlap; the evaluation of the delay time for crystal nucleation; the discovery of new polyamorphous materials; and the in-situ formation of glass in liquid crystals. From these application examples, it is evident that chip calorimetry has the potential to reveal new reaction and transformation behavior and to develop a new understanding.


2019 ◽  
Vol 186 (9) ◽  
Author(s):  
Laura Saa ◽  
Beatriz Díez-Buitrago ◽  
Nerea Briz ◽  
Valeri Pavlov

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 43
Author(s):  
Jitlada Vichapong ◽  
Rawikan Kachangoon ◽  
Rodjana Burakham ◽  
Yanawath Santaladchaiyakit ◽  
Supalax Srijaranai

A single-step preconcentration procedure using the in-situ formation of modified nickel–zinc-layered double hydroxides (LDHs) prior to high-performance liquid chromatography (HPLC) is investigated for the determination of neonicotinoid insecticide residues in honey samples. The LDHs could be prepared by the sequential addition of sodium hydroxide, sodium dodecyl sulfate, nickel nitrate 6-hydrate and zinc nitrate 6-hydrate, which were added to the sample solution. The co-precipitate phase and phase separation were obtained by centrifugation, and then the precipitate phase was dissolved in formic acid (concentrate) prior to HPLC analysis. Various analytical parameters affecting extraction efficiency were studied, and the characterization of the LDHs phase was performed using Fourier-transformed infrared spectroscopy and scanning electron microscopy. Under optimum conditions, the limit of detection of the studied neonicotinoids, in real samples, were 30 μg L−1, for all analytes, lower than the maximum residue limits established by the European Union (EU). The developed method provided high enrichment, by a factor of 35. The proposed method was utilized to determine the target insecticides in honey samples, and acceptable recoveries were obtained.


Sign in / Sign up

Export Citation Format

Share Document