Performance evaluation of modified versions of Hargreaves equation across a wide range of Iranian climates

2014 ◽  
Vol 126 (1-2) ◽  
pp. 65-70 ◽  
Author(s):  
Parisa Hosseinzadeh Talaee
2010 ◽  
Vol 20 (02) ◽  
pp. 103-121 ◽  
Author(s):  
MOSTAFA I. SOLIMAN ◽  
ABDULMAJID F. Al-JUNAID

Technological advances in IC manufacturing provide us with the capability to integrate more and more functionality into a single chip. Today's modern processors have nearly one billion transistors on a single chip. With the increasing complexity of today's system, the designs have to be modeled at a high-level of abstraction before partitioning into hardware and software components for final implementation. This paper explains in detail the implementation and performance evaluation of a matrix processor called Mat-Core with SystemC (system level modeling language). Mat-Core is a research processor aiming at exploiting the increasingly number of transistors per IC to improve the performance of a wide range of applications. It extends a general-purpose scalar processor with a matrix unit. To hide memory latency, the extended matrix unit is decoupled into two components: address generation and data computation, which communicate through data queues. Like vector architectures, the data computation unit is organized in parallel lanes. However, on parallel lanes, Mat-Core can execute matrix-scalar, matrix-vector, and matrix-matrix instructions in addition to vector-scalar and vector-vector instructions. For controlling the execution of vector/matrix instructions on the matrix core, this paper extends the well known scoreboard technique. Furthermore, the performance of Mat-Core is evaluated on vector and matrix kernels. Our results show that the performance of four lanes Mat-Core with matrix registers of size 4 × 4 or 16 elements each, queues size of 10, start up time of 6 clock cycles, and memory latency of 10 clock cycles is about 0.94, 1.3, 2.3, 1.6, 2.3, and 5.5 FLOPs per clock cycle; achieved on scalar-vector multiplication, SAXPY, Givens, rank-1 update, vector-matrix multiplication, and matrix-matrix multiplication, respectively.


1968 ◽  
Vol 90 (4) ◽  
pp. 349-359 ◽  
Author(s):  
O. E. Balje´ ◽  
R. L. Binsley

The maximum obtainable efficiency and associated geometry have been calculated based on the use of generalized loss correlations from Part A and are presented for full and partial admission turbines over a wide range of specific speeds. The calculated effects of varying values of Reynolds number, tip clearance, and trailing edge thickness on turbine performance are presented. Because of the anticipated difficulty in fabricating some of the optimum geometries calculated, the effects of using nonoptimum values of geometric parameters on attainable efficiency have also been investigated. The derating factor for machine Reynolds number is shown to be a strong function of specific speed, varying from 0.96 at a specific speed of 100, to 0.6 at a specific speed of 3, when Reynolds number is 105 compared to a reference value of 106. The derating factor for tip clearance is shown to be similar to what would be expected if the clearance area were considered as a leakage area. The use of blade heights, blade numbers, rotor exit angles, and degrees of reaction varying from the optimum by 25 percent produce maximum derating factors of 0.99, 0.98, 0.985, and 0.97, respectively, when compared to full optimum values.


Author(s):  
Hamzeh Khazaei ◽  
Jelena Mišić ◽  
Vojislav B. Mišić

Accurate performance evaluation of cloud computing resources is a necessary prerequisite for ensuring that Quality of Service (QoS) parameters remain within agreed limits. In this chapter, the authors consider cloud centers with Poisson arrivals of batch task requests under total rejection policy; task service times are assumed to follow a general distribution. They describe a new approximate analytical model for performance evaluation of such systems and show that important performance indicators such as mean request response time, waiting time in the queue, queue length, blocking probability, probability of immediate service, and probability distribution of the number of tasks in the system can be obtained in a wide range of input parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Eric Kra

Hargreaves equation (HG), which lacks a wind speed (u2) term, was modified, through a linear regression calibration method, into LHGu which hasu2terms. LHGu is effectively a simplified method for approximating FAO-56 Penman-Monteith equation (FPM) daily reference evapotranspiration (ETo) in tropics with only temperature data. In LHGu, the “0.0023” constant term in HG was calibrated as a shifted power function ofu2, and the calibration constant was parametrized as a quadratic function ofu2. LHGu was developed using simulated constantu2data and historical temperature data for four sites in West Africa: Abidjan, Accra, Daloa, and Lome. LHGu matched FPMETobetter than HG over a wide range ofu2: for Accra, foru2range 0.5–6.0 m/s, the modified coefficient of efficiency,E1, varied narrowly (0.83–0.98) for LHGu but widely (0.14–0.95) for HG optimized foru2=2.0 m/s; the corresponding MBE ranges were −0.05–0.01 mm/d for LHGu and 0.02–0.63 mm/d for HG which cannot respond to varying dailyu2. LHGu is useful for quickly computing practically accurate estimates of FPMETofor varying dailyu2where only temperature data are available.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 283
Author(s):  
Fawad Ali Khan ◽  
Rafidah Md Noor ◽  
Miss Laiha Mat Kiah ◽  
Ismail Ahmedy ◽  
Mohd Yamani ◽  
...  

Internet of Things (IoT) facilitates a wide range of applications through sensor-based connected devices that require bandwidth and other network resources. Enhancement of efficient utilization of a heterogeneous IoT network is an open optimization problem that is mostly suffered by network flooding. Redundant, unwanted, and flooded queries are major causes of inefficient utilization of resources. Several query control mechanisms in the literature claimed to cater to the issues related to bandwidth, cost, and Quality of Service (QoS). This research article presented a statistical performance evaluation of different query control mechanisms that addressed minimization of energy consumption, energy cost and network flooding. Specifically, it evaluated the performance measure of Query Control Mechanism (QCM) for QoS-enabled layered-based clustering for reactive flooding in the Internet of Things. By statistical means, this study inferred the significant achievement of the QCM algorithm that outperformed the prevailing algorithms, i.e., Divide-and-Conquer (DnC), Service Level Agreements (SLA), and Hybrid Energy-aware Clustering Protocol for IoT (Hy-IoT) for identification and elimination of redundant flooding queries. The inferential analysis for performance evaluation of algorithms was measured in terms of three scenarios, i.e., energy consumption, delays and throughput with different intervals of traffic, malicious mote and malicious mote with realistic condition. It is evident from the results that the QCM algorithm outperforms the existing algorithms and the statistical probability value “P” < 0.05 indicates the performance of QCM is significant at the 95% confidence interval. Hence, it could be inferred from findings that the performance of the QCM algorithm was substantial as compared to that of other algorithms.


2019 ◽  
Vol 7 (3) ◽  
pp. 319-352 ◽  
Author(s):  
Tomilayo Komolafe ◽  
A. Valeria Quevedo ◽  
Srijan Sengupta ◽  
William H. Woodall

AbstractThe topic of anomaly detection in networks has attracted a lot of attention in recent years, especially with the rise of connected devices and social networks. Anomaly detection spans a wide range of applications, from detecting terrorist cells in counter-terrorism efforts to identifying unexpected mutations during ribonucleic acid transcription. Fittingly, numerous algorithmic techniques for anomaly detection have been introduced. However, to date, little work has been done to evaluate these algorithms from a statistical perspective. This work is aimed at addressing this gap in the literature by carrying out statistical evaluation of a suite of popular spectral methods for anomaly detection in networks. Our investigation on the statistical properties of these algorithms reveals several important and critical shortcomings that we make methodological improvements to address. Further, we carry out a performance evaluation of these algorithms using simulated networks and extend the methods from binary to count networks.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 562
Author(s):  
Wafi A. Mabrouk ◽  
M. F.L Abdullah ◽  
M. S.M Gismalla

FSO technology has attracted a lot of popularity for a variety of applied telecommunication fields. It presents a wide range of advantages that place it in the frontier of high data rates applications, last mile problem and bottleneck issues. It has been preferred for its ease of deployment without fiber cables, no extra tariff fees, cost-effectiveness, and efficiency. FSO excels in performance when compared to contemporary RF technology. On the other hand, there is an increased demand for alternative rail communications solutions. In order to deliver a safer, reliable and fast internet access. In this paper, performance evaluation of a ground-to-train Free Space Optical link communication (G2T FSO) was performed. The system was simulated at 2.5 Gb/s link under several weather conditions. Receiver and geometrical loss were included as well. Furthermore, performance was evaluated in terms of received power, Q factor, BER and eye diagram. Substantial vulnerability to severe fog attenuation was found. Although the system was able to operate with acceptable eye height with min BER of 10-38.  


2001 ◽  
Vol 43 (10) ◽  
pp. 219-224 ◽  
Author(s):  
P. Gagliardo ◽  
S. Adham ◽  
A. Olivieri ◽  
R. Trussell

An integrated membrane system was evaluated for water repurification. Performance evaluation of the membrane system was based on three criteria: flux and fouling, disinfection capability, and rejection of pollutants. Minimal membrane fouling was observed for all of the membranes employed in the study. Significant contaminant rejection was also achieved by the membrane system purifying the reclaimed water to meet and exceed drinking water standards. Wide range of virus rejection was observed for the membranes, which was dependent on the membrane type, manufacturer, and the fouling status. Overall, the results of this study demonstrated that the integrated membrane system is a very effective and reliable process for water repurification.


2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Chung-Hao Chen ◽  
Yi Yao ◽  
Andreas Koschan ◽  
Mongi Abidi

AbstractMost existing performance evaluation methods concentrate on defining various metrics over a wide range of conditions and generating standard benchmarking video sequences to examine the effectiveness of a video tracking system. It is a common practice to incorporate a robustness margin or factor into the system/algorithm design. However, these methods, deterministic approaches, often lead to overdesign, thus increasing costs, or underdesign, causing frequent system failures. In order to overcome the aforementioned limitations, we propose an alternative framework to analyze the physics of the failure process via the concept of reliability. In comparison with existing approaches where system performance is evaluated based on a given benchmarking sequence, the advantage of our proposed framework lies in that a unified and statistical index is used to evaluate the performance of an automated video surveillance system independent of input sequences. Meanwhile, based on our proposed framework, the uncertainty problem of a failure process caused by the system’s complexity, imprecise measurements of the relevant physical constants and variables, and the indeterminate nature of future events can be addressed accordingly.


Author(s):  
Hassan B. Hassan ◽  
Qusay I. Sarham

Introduction: With the rapid deployment of embedded databases across a wide range of embedded devices such as mobile devices, Internet of Things (IoT) devices, etc., the amount of data generated by such devices is also growing increasingly. For this reason, the performance is considered as a crucial criterion in the process of selecting the most suitable embedded database management system to be used to store/retrieve data of these devices. Currently, many embedded databases are available to be utilized in this context. Materials and Methods: In this paper, four popular open-source relational embedded databases; namely, H2, HSQLDB, Apache Derby, and SQLite have been compared experimentally with each other to evaluate their operational performance in terms of creating database tables, retrieving data, inserting data, updating data, deleting data. Results and Discussion: The experimental results of this paper have been illustrated in Table 4. Conclusions: The experimental results and analysis showed that HSQLDB outperformed other databases in most evaluation scenarios.


Sign in / Sign up

Export Citation Format

Share Document